Applications of AI Beyond Image Interpretation

  • José M. Morey
  • Nora M. Haney
  • Woojin Kim


With rapid advancement in deep learning, much attention from the popular press, research publications, and startups has been on using AI for image interpretation in radiology. However, there are many applications of AI within radiology that are beyond image interpretation and may even be implemented much earlier in actual practice. This chapter explores the various uses of AI beyond image interpretation that can enhance radiology through improving imaging appropriateness and utilization, patient scheduling, exam protocoling, image quality, scanner efficiency, radiation exposure, radiologist workflow and reporting, patient follow-up and safety, billing, research and education, and more to improve, ultimately, patient care.


Radiology Artificial intelligence Machine learning Deep learning Medical imaging Natural language processing Content-based image retrieval 


  1. 1.
    Erickson BJ, Korfiatis P, Akkus Z, et al. Machine learning for medical imaging. Radiographics. 2017;37:505.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Prevedello LM, Erdal BS, Ryu JL, et al. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology. 2017;285:923.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis. 2015;115:211.CrossRefGoogle Scholar
  5. 5.
    Sahran S, Albashish D, Abdullah A, et al. Absolute cosine-based SVM-RFE feature selection method for prostate histopathological grading. Artif Intell Med. 2018;87:78–90.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Pedrosa M, Silva JM, Matos S, et al. SCREEN-DR – software architecture for the diabetic retinopathy screening. Stud Health Technol Inform. 2018;247:396.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images. Clin Hemorheol Microcirc. 2018;69:343–54.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Saltz J, Gupta R, Hou L, et al. Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images. Cell Rep. 2018;23:181.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hramov AE, Frolov NS, Maksimenko VA, et al. Artificial neural network detects human uncertainty. Chaos. 2018;28:033607.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115.CrossRefGoogle Scholar
  11. 11.
    Lakhani P, Prater AB, Hutson RK, et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol. 2018;15:350.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Boland GW, Duszak R Jr, McGinty G, et al. Delivery of appropriateness, quality, safety, efficiency and patient satisfaction. J Am Coll Radiol. 2014;11:7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Brink JA, Arenson RL, Grist TM, et al. Bits and bytes: the future of radiology lies in informatics and information technology. Eur Radiol. 2017;27:3647.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ip IK, Schneider L, Seltzer S, et al. Impact of provider-led, technology-enabled radiology management program on imaging. Am J Med. 2013;126:687.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Sistrom CL, Dang PA, Weilburg JB, et al. Effect of computerized order entry with integrated decision support on the growth of outpatient procedure volumes: seven-year time series analysis. Radiology. 2009;251:147.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kruskal JB, Berkowitz S, Geis JR, et al. Big data and machine learning-strategies for driving this bus: a summary of the 2016 intersociety summer conference. J Am Coll Radiol. 2017;14:811.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Morey JM, Haney NM, Cooper PB. A predictive diagnostic imaging calculator as a clinical decision support tool. J Am Coll Radiol. 2014;11:736.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hassanpour S, Langlotz CP. Predicting high imaging utilization based on initial radiology reports: a feasibility study of machine learning. Acad Radiol. 2016;23:84.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Muelly M, Vasanawala S. MRI schedule optimization through discrete event simulation and neural networks as a means of increasing scanner productivity. In: Radiology Society of North America (RSNA) 102nd scientific assembly and annual meeting. Chicago, IL, November 2016.Google Scholar
  20. 20.
    Muelly M, Stoddard P, Vasanwala S. Using machine learning with dynamic exam block lengths to decrease patient wait time and optimize MRI schedule fill rate. In: International society for magnetic resonance in medicine. Honolulu, HI, April 2017.Google Scholar
  21. 21.
    Li X, Wang J, Fung RYK. Approximate dynamic programming approaches for appointment scheduling with patient preferences. Artif Intell Med. 2018;85:16.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Hills LS. How to handle patients who miss appointments or show up late. J Med Pract Manage. 2009;25:166.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Blumenthal DM, Singal G, Mangla SS, et al. Predicting non-adherence with outpatient colonoscopy using a novel electronic tool that measures prior non-adherence. J Gen Intern Med. 2015;30:724.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Torres O, Rothberg MB, Garb J, et al. Risk factor model to predict a missed clinic appointment in an urban, academic, and underserved setting. Popul Health Manag. 2015;18:131.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Huang Y, Hanauer DA. Patient no-show predictive model development using multiple data sources for an effective overbooking approach. Appl Clin Inform. 2014;5:836.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Percac-Lima S, Cronin PR, Ryan DP, et al. Patient navigation based on predictive modeling decreases no-show rates in cancer care. Cancer. 2015;121:1662.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Harvey HB, Liu C, Ai J, et al. Predicting no-shows in radiology using regression modeling of data available in the electronic medical record. J Am Coll Radiol. 2017;14:1303.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kurasawa H, Hayashi K, Fujino A, et al. Machine-learning-based prediction of a missed scheduled clinical appointment by patients with diabetes. J Diabetes Sci Technol. 2016;10:730.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chang JT, Sewell JL, Day LW. Prevalence and predictors of patient no-shows to outpatient endoscopic procedures scheduled with anesthesia. BMC Gastroenterol. 2015;15:123.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kaplan-Lewis E, Percac-Lima S. No-show to primary care appointments: why patients do not come. J Prim Care Community Health. 2013;4:251.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Miller AJ, Chae E, Peterson E, et al. Predictors of repeated “no-showing” to clinic appointments. Am J Otolaryngol. 2015;36:411.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    AlRowaili MO, Ahmed AE, Areabi HA. Factors associated with no-shows and rescheduling MRI appointments. BMC Health Serv Res. 2016;16:679.CrossRefGoogle Scholar
  33. 33.
    Curran JS, Halpert RD, Straatman A. Patient “no-shows” – are we scheduling failure? Radiol Manage. 1989;11:44.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Guzek LM, Fadel WF, Golomb MR. A pilot study of reasons and risk factors for “no-shows” in a pediatric neurology clinic. J Child Neurol. 2015;30:1295.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Norbash A, Yucel K, Yuh W, et al. Effect of team training on improving MRI study completion rates and no-show rates. J Magn Reson Imaging. 2016;44:1040.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Samuels RC, Ward VL, Melvin P, et al. Missed appointments: factors contributing to high no-show rates in an urban pediatrics primary care clinic. Clin Pediatr (Phila). 2015;54:976.CrossRefGoogle Scholar
  37. 37.
    McMullen MJ, Netland PA. Lead time for appointment and the no-show rate in an ophthalmology clinic. Clin Ophthalmol. 2015;9:513.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Trivedi H, Mesterhazy J, Laguna B, et al. Automatic determination of the need for intravenous contrast in musculoskeletal MRI examinations using IBM Watson’s natural language processing algorithm. J Digit Imaging. 2018;31:245.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rothenberg S, Patel J, Herschu M. Evaluation of a machine-learning approach to protocol MRI examinations: initial experience predicting use of contrast by neuroradiologists in MRI protocols. In: Radiology Society of North America (RSNA) 2012nd scientific assembly and annual meeting. Chicago, IL, November 2016.Google Scholar
  40. 40.
    Sohn J, Trivedi H, Mesterhazy J. Development and validation of machine learning based natural language classifiers to automatically assign MRI abdomen/pelvis protocols from free-text clinical indications. In: Society of Imaging Informations in Medicine (SIIM) annual meeting. Pittsburgh, PA, June 2017.Google Scholar
  41. 41.
    Brown AD, Marotta TR. Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc. 2018;25:568.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lee YH. Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks. J Digit Imaging. 2018;31:604–10.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Hyun CM, Kim HP, Lee SM, et al. Deep learning for undersampled MRI reconstruction. Phys Med Biol. 2018;63:135007.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhu B, Liu JZ, Cauley SF, et al. Image reconstruction by domain-transform manifold learning. Nature. 2018;555:487.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Eo T, Jun Y, Kim T, et al. KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn Reson Med. 2018;80:2188–201.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Golkov V, Dosovitskiy A, Sperl JI, et al. q-Space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging. 2016;35:1344.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79:3055.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging. 2018;37:1.CrossRefGoogle Scholar
  49. 49.
    Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging. 2018;37:1.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Zaharchuk G, Gong E, Wintermark M, et al. Deep learning in neuroradiology. Am J Neuroradiol. 2018; Scholar
  51. 51.
    Gong E, Pauly JM, Wintermark M, et al. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging. 2018;48:330–40.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Geyer LL, Schoepf UJ, Meinel FG, et al. State of the art: iterative CT reconstruction techniques. Radiology. 2015;276:339.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Patino M, Fuentes JM, Singh S, et al. Iterative reconstruction techniques in abdominopelvic CT: technical concepts and clinical implementation. Am J Roentgenol. 2015;205:W19.CrossRefGoogle Scholar
  54. 54.
    Ledig C, Theis L, Huszar F, et al. Photo-realistic single image super-resolution using a generative adversarial network. 2016. CoRR, abs/1609.04802.Google Scholar
  55. 55.
    Dong C, Loy CC, He K, et al. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2016;38:295.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hayat K. Super-resolution via deep learning. 2017. CoRR, abs/1706.09077.Google Scholar
  57. 57.
    Johnson J, Alahi A, Li F-F. Perceptual losses for real-time style transfer and super-resolution. 2016. CoRR, abs/1603.08155.CrossRefGoogle Scholar
  58. 58.
    Lim B, Son S, Kim H, et al. Enhanced deep residual networks for single image super-resolution. 2017. CoRR, abs/1707.02921.Google Scholar
  59. 59.
    Shi W, Caballero J, Huszár F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. 2016. CoRR, abs/1609.05158.Google Scholar
  60. 60.
    Sajjadi MSM, Schölkopf B, Hirsch M. EnhanceNet: single image super-resolution through automated texture synthesis. 2016. CoRR, abs/1612.07919.Google Scholar
  61. 61.
    Chen H, Zhang Y, Zhang W, et al. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8:679.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Chen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017;36:2524.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Yasaka K, Katsura M, Akahane M, et al. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. Springerplus. 2013;2:209.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Moloney F, Twomey M, Fama D, et al. Determination of a suitable low-dose abdominopelvic CT protocol using model-based iterative reconstruction through cadaveric study. J Med Imaging Radiat Oncol. 2018; Scholar
  65. 65.
    Murphy KP, Crush L, O’Neill SB, et al. Feasibility of low-dose CT with model-based iterative image reconstruction in follow-up of patients with testicular cancer. Eur J Radiol Open. 2016;3:38.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cross NM, DeBerry J, Ortiz D, et al. Diagnostic quality of machine learning algorithm for optimization of low-dose computed tomography data. In: SIIM (Society for Imaging Informatics in Medicine) Annual Meeting, 2017Google Scholar
  67. 67.
    Xu J, Gong E, Pauly JM, et al. 200x low-dose PET reconstruction using deep learning. 2017. CoRR, abs/1712.04119.Google Scholar
  68. 68.
    Yang Q, Li N, Zhao Z, et al. MRI image-to-image translation for cross-modality image registration and segmentation. 2018. CoRR, abs/1801.06940.Google Scholar
  69. 69.
    Liu F, Jang H, Kijowski R, et al. Deep learning MR imaging–based attenuation correction for PET/MR imaging. Radiology. 2018;286:676.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys. 2017;44:1408.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Wolterink JM, Dinkla AM, Savenije MHF, et al. Deep MR to CT synthesis using unpaired data. 2017. CoRR, abs/1708.01155Google Scholar
  72. 72.
    Ben-Cohen A, Klang E, Raskin SP, et al. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. 2018. CoRR, abs/1802.07846Google Scholar
  73. 73.
    Li R, Zhang W, Suk H-I, et al. Deep learning based imaging data completion for improved brain disease diagnosis. Presented at the Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, Cham. 2014.Google Scholar
  74. 74.
    Esses SJ, Lu X, Zhao T, et al. Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging. 2018;47:723.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kohli MD, Summers RM, Geis JR. Medical image data and datasets in the era of machine learning-whitepaper from the 2016 C-MIMI meeting dataset session. J Digit Imaging. 2017;30:392.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Wang KC, Patel JB, Vyas B, et al. Use of radiology procedure codes in health care: the need for standardization and structure. Radiographics. 2017;37:1099.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bulu H, Sippo DA, Lee JM, et al. Proposing new RadLex terms by analyzing free-text mammography reports. J Digit Imaging. 2018;31:596–603.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Percha B, Zhang Y, Bozkurt S, et al. Expanding a radiology lexicon using contextual patterns in radiology reports. J Am Med Inform Assoc. 2018;25:679–85.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Duda J, Botzolakis E, Chen P-H, et al. Bayesian network interface for assisting radiology interpretation and education. Presented at the SPIE medical imaging. 2018.Google Scholar
  80. 80.
    Chen R, Wang S, Poptani H, et al. A Bayesian diagnostic system to differentiate glioblastomas from solitary brain metastases. Neuroradiol J. 2013;26:175.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
  82. 82.
    Rubin DL, Kahn CE Jr. Common data elements in radiology. Radiology. 2017;283:837.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Zech J, Pain M, Titano J, et al. Natural language–based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;287:570.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Meystre SM, Savova GK, Kipper-Schuler KC, et al. Extracting information from textual documents in the electronic health record: a review of recent research. Yearb Med Inform. 2008;128:44.Google Scholar
  85. 85.
    Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pons E, Braun LM, Hunink MG, et al. Natural language processing in radiology: a systematic review. Radiology. 2016;279:329.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Tan WK, Hassanpour S, Heagerty PJ, et al. Comparison of natural language processing rules-based and machine-learning systems to identify lumbar spine imaging findings related to low back pain. Acad Radiol. 2018; Scholar
  88. 88.
    Chen PH, Zafar H, Galperin-Aizenberg M, et al. integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports. J Digit Imaging. 2018;31:178.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Liu P, Pan X. Text summarization with TensorFlow. Google Blogs. 2016.
  90. 90.
    Rush AM, Chopra S, Weston J. A neural attention model for abstractive sentence summarization. 2015. CoRR, abs/1509.00685.Google Scholar
  91. 91.
    Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. 2014. CoRR, abs/1409.3215.Google Scholar
  92. 92.
    Wu Y, Schuster M, Chen Z, et al. Google’s neural machine translation system: bridging the gap between human and machine translation. 2016. CoRR, abs/1609.08144Google Scholar
  93. 93.
    Walker J, Darer JD, Elmore JG, et al. The road toward fully transparent medical records. N Engl J Med. 2014;370:6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Oh SC, Cook TS, Kahn CE Jr. PORTER: a prototype system for patient-oriented radiology reporting. J Digit Imaging. 2016;29:450.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Bossen JK, Hageman MG, King JD, et al. Does rewording MRI reports improve patient understanding and emotional response to a clinical report? Clin Orthop Relat Res. 2013;471:3637.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ringler MD, Goss BC, Bartholmai BJ. Syntactic and semantic errors in radiology reports associated with speech recognition software. Health Inform J. 2017;23:3.CrossRefGoogle Scholar
  97. 97.
    Quint LE, Quint DJ, Myles JD. Frequency and spectrum of errors in final radiology reports generated with automatic speech recognition technology. J Am Coll Radiol. 2008;5:1196.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Zhang Y, Pezeshki M, Brakel P, et al. Towards end-to-end speech recognition with deep convolutional neural networks. 2017. CoRR, abs/1701.02720.Google Scholar
  99. 99.
    Hannun AY, Case C, Casper J, et al. Deep speech: scaling up end-to-end speech recognition. 2014. CoRR, abs/1412.5567.Google Scholar
  100. 100.
    Zhang Z, Geiger JT, Pohjalainen J, et al. Deep learning for environmentally robust speech recognition: an overview of recent developments. 2017. CoRR, abs/1705.10874.Google Scholar
  101. 101.
    Zhang Y, Chan W, Jaitly N. Very deep convolutional networks for end-to-end speech recognition. Presented at the 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), 5–9 March 2017. 2017.Google Scholar
  102. 102.
    Blagev DP, Lloyd JF, Conner K, et al. Follow-up of incidental pulmonary nodules and the radiology report. J Am Coll Radiol. 2016;13:R18.CrossRefGoogle Scholar
  103. 103.
    Cook TS, Lalevic D, Sloan C, et al. Implementation of an automated radiology recommendation-tracking engine for abdominal imaging findings of possible cancer. J Am Coll Radiol. 2017;14:629.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Xu Y, Tsujii J, Chang EIC. Named entity recognition of follow-up and time information in 20 000 radiology reports. J Am Med Inform Assoc. 2012;19:792.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lacson R, Desai S, Landman A, et al. Impact of a health information technology intervention on the follow-up management of pulmonary nodules. J Digit Imaging. 2018;31:19.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. npj Digital Medicine. 2018;1:9.CrossRefGoogle Scholar
  107. 107.
    Yaniv G, Kuperberg A, Walach E. Deep learning algorithm for optimizing critical findings report turnaround time. In: SIIM (Society for Imaging Informatics in Medicine) Annual Meeting. 2018.Google Scholar
  108. 108.
    Baum R, Bertsimas D, Kallus N. Scheduling, revenue management, and fairness in an academic-hospital radiology division. Acad Radiol. 2014;21:1322.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Avrin D. Faculty scheduling. Acad Radiol. 2014;21:1223.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Boroumand G, Dave JK, Roth CG. Shedding light on the off-hours coverage gap in radiology: improving turnaround times and critical results reporting. House Staff Quality Improvement and Patient Safety Posters. Poster 64. Jefferson Digital Commons. 2017.
  111. 111.
    Lazzeri F, Lu H, Reiter I. Optimizing project staffing to improve profitability with Cortana Intelligence. In: Microsoft learning blog, vol. 2018. 2017.
  112. 112.
    Prevedello LM, Andriole KP, Hanson R, et al. Business intelligence tools for radiology: creating a prototype model using open-source tools. J Digit Imaging. 2010;23:133.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Cook TS, Nagy P. Business intelligence for the radiologist: making your data work for you. J Am Coll Radiol. 2014;11:1238.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Meenan C, Erickson B, Knight N, et al. Workflow lexicons in healthcare: validation of the SWIM lexicon. J Digit Imaging. 2017;30:255.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Muramatsu C. Overview on subjective similarity of images for content-based medical image retrieval. Radiol Phys Technol. 2018;11:109–24.CrossRefGoogle Scholar
  116. 116.
    Miller DD, Brown EW. Artificial intelligence in medical practice: the question to the answer? Am J Med. 2018;131:129.CrossRefGoogle Scholar
  117. 117.
    Duszak R Jr, Nossal M, Schofield L, et al. Physician documentation deficiencies in abdominal ultrasound reports: frequency, characteristics, and financial impact. J Am Coll Radiol. 2012;9:403.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Report, B. s. H. C. Combatting denials using machine intelligence: how it works and why now is the time for it, vol. 2018. 2015.
  119. 119.
    Hawkins CM, DeLa OA, Hung C. Social media and the patient experience. J Am Coll Radiol. 2016;13:1615.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Gefen R, Bruno MA, Abujudeh HH. Online portals: gateway to patient-centered radiology. AJR Am J Roentgenol. 2017;209:987.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Partridge SR, Gallagher P, Freeman B, et al. Facebook groups for the management of chronic diseases. J Med Internet Res. 2018;20:e21.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models and saliency maps. 2013. CoRR, abs/1312.6034.Google Scholar
  123. 123.
    Dhurandhar A, Chen P-Y, Luss R, et al. Explanations based on the missing: towards contrastive explanations with pertinent negatives. 2018. CoRR, abs/1802.07623.Google Scholar
  124. 124.
    Kim W. Beyond interpretation. ACR DSI Blog. 2017.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José M. Morey
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Nora M. Haney
    • 7
  • Woojin Kim
    • 8
  1. 1.Singularity UniversityMoffett FieldUSA
  2. 2.Liberty BiosecurityArlingtonUSA
  3. 3.Hyperloop Transportation TechnologiesCulver CityUSA
  4. 4.NASA iTechHamptonUSA
  5. 5.Eastern Virginia Medical SchoolNorfolkUSA
  6. 6.University of VirginiaCharlottesvilleUSA
  7. 7.Johns Hopkins HospitalBaltimoreUSA
  8. 8.Nuance CommunicationsBurlingtonUSA

Personalised recommendations