# Conjectures About Certain Parabolic Kazhdan–Lusztig Polynomials

Conference paper

First Online:

## Abstract

Irreducibility results for parabolic induction of representations of the general linear group over a local non-Archimedean field can be formulated in terms of Kazhdan–Lusztig polynomials of type *A*. Spurred by these results and some computer calculations, we conjecture that certain alternating sums of Kazhdan–Lusztig polynomials known as parabolic Kazhdan–Lusztig polynomials satisfy properties analogous to those of the ordinary ones.

## Keywords

Kazhdan–Lusztig polynomials## Notes

### Acknowledgment

The author would like to thank Karim Adiprasito, Joseph Bernstein, Sara Billey, David Kazhdan, George Lusztig, Greg Warrington, Geordie Williamson, and Zhiwei Yun for helpful correspondence. We also thank the referee for useful suggestions.

## References

- [BB05]Anders Björner and Francesco Brenti,
*Combinatorics of Coxeter groups*, Graduate Texts in Mathematics, vol. 231, Springer, New York, 2005. MR 2133266 (2006d:05001)Google Scholar - [BBL98]Prosenjit Bose, Jonathan F. Buss, and Anna Lubiw,
*Pattern matching for permutations*, Inform. Process. Lett.**65**(1998), no. 5, 277–283. MR 1620935MathSciNetCrossRefGoogle Scholar - [BC17]Francesco Brenti and Fabrizio Caselli,
*Peak algebras, paths in the Bruhat graph and Kazhdan-Lusztig polynomials*, Adv. Math.**304**(2017), 539–582. MR 3558217MathSciNetCrossRefGoogle Scholar - [BH99]Brigitte Brink and Robert B. Howlett,
*Normalizers of parabolic subgroups in Coxeter groups*, Invent. Math.**136**(1999), no. 2, 323–351. MR 1688445MathSciNetCrossRefGoogle Scholar - [BJS93]Sara C. Billey, William Jockusch, and Richard P. Stanley,
*Some combinatorial properties of Schubert polynomials*, J. Algebraic Combin.**2**(1993), no. 4, 345–374. MR 1241505Google Scholar - [BMB07]Mireille Bousquet-Mélou and Steve Butler,
*Forest-like permutations*, Ann. Comb.**11**(2007), no. 3-4, 335–354. MR 2376109MathSciNetCrossRefGoogle Scholar - [BMS16]Francesco Brenti, Pietro Mongelli, and Paolo Sentinelli,
*Parabolic Kazhdan-Lusztig polynomials for quasi-minuscule quotients*, Adv. in Appl. Math.**78**(2016), 27–55. MR 3497995Google Scholar - [Bor98]Richard E. Borcherds,
*Coxeter groups, Lorentzian lattices, and**K*3*surfaces*, Internat. Math. Res. Notices (1998), no. 19, 1011–1031. MR MR1654763 (2000a:20088)Google Scholar - [Bre02]Francesco Brenti,
*Kazhdan-Lusztig and**R-polynomials, Young’s lattice, and Dyck partitions*, Pacific J. Math.**207**(2002), no. 2, 257–286. MR 1972246MathSciNetCrossRefGoogle Scholar - [BW01]Sara C. Billey and Gregory S. Warrington,
*Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations*, J. Algebraic Combin.**13**(2001), no. 2, 111–136. MR 1826948Google Scholar - [BW03]——,
*Maximal singular loci of Schubert varieties in*SL(*n*)∕*B*, Trans. Amer. Math. Soc.**355**(2003), no. 10, 3915–3945. MR 1990570Google Scholar - [BY13]Roman Bezrukavnikov and Zhiwei Yun,
*On Koszul duality for Kac-Moody groups*, Represent. Theory**17**(2013), 1–98. MR 3003920MathSciNetCrossRefGoogle Scholar - [dC02]Fokko du Cloux,
*Computing Kazhdan-Lusztig polynomials for arbitrary Coxeter groups*, Experiment. Math.**11**(2002), no. 3, 371–381. MR 1959749 (2004j:20084)Google Scholar - [Dem74]Michel Demazure,
*Désingularisation des variétés de Schubert généralisées*, Ann. Sci. École Norm. Sup. (4)**7**(1974), 53–88, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I. MR 0354697 (50 #7174)Google Scholar - [Deo85]Vinay V. Deodhar,
*Local Poincaré duality and nonsingularity of Schubert varieties*, Comm. Algebra**13**(1985), no. 6, 1379–1388. MR 788771 (86i:14015)MathSciNetCrossRefGoogle Scholar - [Deo87]——,
*On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials*, J. Algebra**111**(1987), no. 2, 483–506. MR 916182 (89a:20054)Google Scholar - [Deo90]——,
*A combinatorial setting for questions in Kazhdan-Lusztig theory*, Geom. Dedicata**36**(1990), no. 1, 95–119. MR 1065215 (91h:20075)Google Scholar - [Deo94]Vinay Deodhar,
*A brief survey of Kazhdan-Lusztig theory and related topics*, Algebraic groups and their generalizations: classical methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 105–124. MR 1278702 (96d:20039)Google Scholar - [EW14]Ben Elias and Geordie Williamson,
*The Hodge theory of Soergel bimodules*, Ann. of Math. (2)**180**(2014), no. 3, 1089–1136. MR 3245013Google Scholar - [Fan98]C. K. Fan,
*Schubert varieties and short braidedness*, Transform. Groups**3**(1998), no. 1, 51–56. MR 1603806 (98m:14052)MathSciNetCrossRefGoogle Scholar - [FG97]C. K. Fan and R. M. Green,
*Monomials and Temperley-Lieb algebras*, J. Algebra**190**(1997), no. 2, 498–517. MR 1441960 (98a:20037)MathSciNetCrossRefGoogle Scholar - [Fox]Jacob Fox,
*Stanley-Wilf limits are typically exponential*, Adv. Math.**to appear**, arXiv:1310.8378.Google Scholar - [GM14]Sylvain Guillemot and Dániel Marx,
*Finding small patterns in permutations in linear time*, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 2014, pp. 82–101. MR 3376367Google Scholar - [Hen07]Anthony Henderson,
*Nilpotent orbits of linear and cyclic quivers and Kazhdan-Lusztig polynomials of type A*, Represent. Theory**11**(2007), 95–121 (electronic). MR 2320806MathSciNetCrossRefGoogle Scholar - [How80]Robert B. Howlett,
*Normalizers of parabolic subgroups of reflection groups*, J. London Math. Soc. (2)**21**(1980), no. 1, 62–80. MR 576184Google Scholar - [JW13]Brant Jones and Alexander Woo,
*Mask formulas for cograssmannian Kazhdan-Lusztig polynomials*, Ann. Comb.**17**(2013), no. 1, 151–203. MR 3027577MathSciNetCrossRefGoogle Scholar - [KL79]David Kazhdan and George Lusztig,
*Representations of Coxeter groups and Hecke algebras*, Invent. Math.**53**(1979), no. 2, 165–184. MR 560412 (81j:20066)MathSciNetCrossRefGoogle Scholar - [KT02]Masaki Kashiwara and Toshiyuki Tanisaki,
*Parabolic Kazhdan-Lusztig polynomials and Schubert varieties*, J. Algebra**249**(2002), no. 2, 306–325. MR 1901161 (2004a:14049)MathSciNetCrossRefGoogle Scholar - [Lap17]Erez Lapid,
*A tightness property of relatively smooth permutations*, 2017, arXiv:1710.06115.Google Scholar - [Las95]Alain Lascoux,
*Polynômes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires*, C. R. Acad. Sci. Paris Sér. I Math.**321**(1995), no. 6, 667–670. MR 1354702 (96g:05144)Google Scholar - [LM16]Erez Lapid and Alberto Mínguez,
*Geometric conditions for*\(\square \)*-irreducibility of certain representations of the general linear group over a non-Archimedean local field*, 2016, arXiv:1605.08545.Google Scholar - [LS90]V. Lakshmibai and B. Sandhya,
*Criterion for smoothness of Schubert varieties in*Sl(*n*)∕*B*, Proc. Indian Acad. Sci. Math. Sci.**100**(1990), no. 1, 45–52. MR 1051089MathSciNetCrossRefGoogle Scholar - [Lus93]G. Lusztig,
*Tight monomials in quantized enveloping algebras*, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), Israel Math. Conf. Proc., vol. 7, Bar-Ilan Univ., Ramat Gan, 1993, pp. 117–132. MR 1261904Google Scholar - [Lus03]——,
*Hecke algebras with unequal parameters*, CRM Monograph Series, vol. 18, American Mathematical Society, Providence, RI, 2003. MR 1974442Google Scholar - [Lus77]——,
*Coxeter orbits and eigenspaces of Frobenius*, Invent. Math.**38**(1976/77), no. 2, 101–159. MR 0453885Google Scholar - [LW17]Nicolas Libedinsky and Geordie Williamson,
*The anti-spherical category*, 2017, arXiv:1702.00459.Google Scholar - [Mac04]Percy A. MacMahon,
*Combinatory analysis. Vol. I, II (bound in one volume)*, Dover Phoenix Editions, Dover Publications, Inc., Mineola, NY, 2004, Reprint of*An introduction to combinatory analysis*(1920) and*Combinatory analysis. Vol. I, II*(1915, 1916). MR 2417935Google Scholar - [Mon14]Pietro Mongelli,
*Kazhdan-Lusztig polynomials of Boolean elements*, J. Algebraic Combin.**39**(2014), no. 2, 497–525. MR 3159260Google Scholar - [MT04]Adam Marcus and Gábor Tardos,
*Excluded permutation matrices and the Stanley-Wilf conjecture*, J. Combin. Theory Ser. A**107**(2004), no. 1, 153–160. MR 2063960Google Scholar - [Sen14]Paolo Sentinelli,
*Isomorphisms of Hecke modules and parabolic Kazhdan-Lusztig polynomials*, J. Algebra**403**(2014), 1–18. MR 3166061Google Scholar - [SW04]Zvezdelina Stankova and Julian West,
*Explicit enumeration of 321, hexagon-avoiding permutations*, Discrete Math.**280**(2004), no. 1-3, 165–189. MR 2043806MathSciNetCrossRefGoogle Scholar - [Ten07]Bridget Eileen Tenner,
*Pattern avoidance and the Bruhat order*, J. Combin. Theory Ser. A**114**(2007), no. 5, 888–905. MR 2333139MathSciNetCrossRefGoogle Scholar - [War11]Gregory S. Warrington,
*Equivalence classes for the**μ-coefficient of Kazhdan-Lusztig polynomials in**S*_{n}, Exp. Math.**20**(2011), no. 4, 457–466. MR 2859901 (2012j:05460)Google Scholar - [Wes96]Julian West,
*Generating trees and forbidden subsequences*, Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), vol. 157, 1996, pp. 363–374. MR 1417303Google Scholar - [Yun09]Zhiwei Yun,
*Weights of mixed tilting sheaves and geometric Ringel duality*, Selecta Math. (N.S.)**14**(2009), no. 2, 299–320. MR 2480718Google Scholar

## Copyright information

© Springer International Publishing AG, part of Springer Nature 2018