Advertisement

Twisted Endoscopy from a Sheaf-Theoretic Perspective

  • Aaron Christie
  • Paul Mezo
Conference paper
Part of the Simons Symposia book series (SISY)

Abstract

The standard theory of endoscopy for real groups has two parallel formulations. The original formulation of Langlands and Shelstad relies on methods in harmonic analysis. The subsequent formulation of Adams, Barbasch and Vogan relies on sheaf-theoretic methods. The original formulation was extended by Kottwitz and Shelstad to twisted endoscopy. We extend the sheaf-theoretic formulation to the context of twisted endoscopy and provide applications for computing Arthur packets.

Keywords

Representations of lie groups Sheaf cohomology Endoscopy 

Notes

Acknowledgements

P. Mezo was supported in part by NSERC grant RGPIN 293148-2010.

References

  1. [ABV92]
    J. D. Adams, D. Barbasch, and D. A. Vogan. The Langlands classification and irreducible characters of real reductive groups. Birkhäuser, 1992.Google Scholar
  2. [AMR]
    N. Arancibia, C. Moeglin, and D. Renard. Paquets d’Arthur des groupes classiques et unitaires. https://arxiv.org/abs/1507.01432.
  3. [Art89]
    J. Arthur. Unipotent automorphic representations: conjectures. In Orbites unipotentes et représentations, volume 171–172 of Astérisque, 1989.Google Scholar
  4. [Art08]
    J. Arthur. Problems for real groups. In Representation theory of real reductive Lie groups, volume 472 of Contemp. Math, pages 39–62, 2008.Google Scholar
  5. [Art13]
    J. Arthur. The endoscopic classification of representations. Orthogonal and symplectic groups. American Mathematical Society, 2013.Google Scholar
  6. [Atl]
  7. [AV92]
    J. D. Adams and D. A. Vogan. L-groups, projective representations, and the Langlands classification. Amer. J. Math., 114:45–138, 1992.MathSciNetCrossRefGoogle Scholar
  8. [AV15]
    J. D. Adams and D. A. Vogan. Parameters for twisted representations. In Representations of reductive groups, pages 51–116. Birkhäuser, 2015.Google Scholar
  9. [AvLTV]
    J. D. Adams, M. van Leeuwen, P. E. Trapa, and D. A. Vogan. Unitary representations of real reductive groups. https://arxiv.org/abs/1212.2192.
  10. [BBD82]
    A. A. Beilinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analyse et topologie sur les espaces singuliers, volume 100 of Astérisque, 1982.Google Scholar
  11. [Hum72]
    J. E. Humphreys. Introduction to Lie algebras and representation theory. Springer-Verlag, 1972.Google Scholar
  12. [KS99]
    R. Kottwitz and D. Shelstad. Foundations of twisted endoscopy, volume 255 of Astérisque. Société Mathématique de France, 1999.Google Scholar
  13. [Lan89]
    R. P. Langlands. On the classification of irreducible representations of real algebraic groups. In Representation theory and harmonic analysis on semisimple Lie groups, pages 101–170. Amer. Math. Soc., 1989.Google Scholar
  14. [LV14]
    G. Lusztig and D. A. Vogan. Quasisplit Hecke algebras and symmetric spaces. Duke Math J., 163(5):983–1034, 2014.MathSciNetCrossRefGoogle Scholar
  15. [McG09]
    W. M. McGovern. Closures of K-orbits in the flag variety for U(p, q). J. Algebra, 322(8):2709–2712, 2009.MathSciNetCrossRefGoogle Scholar
  16. [Mez07]
    P. Mezo. Automorphism-invariant representations of real reductive groups. Amer. J. Math., 129(4):1063–1085, 2007.MathSciNetCrossRefGoogle Scholar
  17. [Mez16]
    P. Mezo. Tempered spectral transfer in the twisted endoscopy of real groups. J. Inst. Math. Jussieu, 15:569–612, 2016.MathSciNetCrossRefGoogle Scholar
  18. [Mok15]
    C. P. Mok. Endoscopic classification of representations of quasi-split unitary groups. Mem. Amer. Math. Soc., 245(1108), 2015.MathSciNetCrossRefGoogle Scholar
  19. [MR]
    C. Moeglin and D. Renard. Paquets d’Arthur des groupes classiques complexes. https://arxiv.org/abs/1604.07328.
  20. [She82]
    D. Shelstad. L-indistinguishability for real groups. Math. Ann., 259:385–430, 1982.MathSciNetCrossRefGoogle Scholar
  21. [She08]
    D. Shelstad. Tempered endoscopy for real groups. III. Represent. Theory, 12:369–402, 2008.MathSciNetCrossRefGoogle Scholar
  22. [She12]
    D. Shelstad. On geometric transfer in real twisted endoscopy. Ann. of Math., 176:1919–1985, 2012.MathSciNetCrossRefGoogle Scholar
  23. [Ste68]
    R. Steinberg. Endomorphisms of linear algebraic groups. Mem. Amer. Math. Soc., 80:1–108, 1968.MathSciNetzbMATHGoogle Scholar
  24. [SV80]
    B. Speh and D. A. Vogan. Reducibility of generalized principal series representations. Acta Math., 145(3–4):227–299, 1980.MathSciNetCrossRefGoogle Scholar
  25. [Wei94]
    C. A. Weibel. An introduction to homological algebra. Cambridge University Press, 1994.CrossRefGoogle Scholar
  26. [Wys02]
    B. J. Wyser. Symmetric Subgroup Orbit Closures on Flag Varieties: Their Equivariant Geometry, Combinatorics, and Connections With Degeneracy Loci. PhD thesis, Mississippi State University, 2002.Google Scholar
  27. [Yam97]
    A. Yamamoto. Orbits in the flag variety and images of the moment map for classical groups. I. Represent. Theory, 1:329–404, 1997.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsCarleton UniversityOttawaCanada

Personalised recommendations