Advertisement

ProofWatch: Watchlist Guidance for Large Theories in E

  • Zarathustra Goertzel
  • Jan Jakubův
  • Stephan Schulz
  • Josef Urban
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10895)

Abstract

Watchlist (also hint list) is a mechanism that allows related proofs to guide a proof search for a new conjecture. This mechanism has been used with the Otter and Prover9 theorem provers, both for interactive formalizations and for human-assisted proving of open conjectures in small theories. In this work we explore the use of watchlists in large theories coming from first-order translations of large ITP libraries, aiming at improving hammer-style automation by smarter internal guidance of the ATP systems. In particular, we (i) design watchlist-based clause evaluation heuristics inside the E ATP system, and (ii) develop new proof guiding algorithms that load many previous proofs inside the ATP and focus the proof search using a dynamically updated notion of proof matching. The methods are evaluated on a large set of problems coming from the Mizar library, showing significant improvement of E’s standard portfolio of strategies, and also of the previous best set of strategies invented for Mizar by evolutionary methods.

Notes

Acknowledgments

We thank Bob Veroff for many enlightening explanations and discussions of the watchlist mechanisms in Otter and Prover9. His “industry-grade” projects that prove open and interesting mathematical conjectures with hints and proof sketches have been a great sort of inspiration for this work.

References

  1. 1.
    Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning 52(2), 191–213 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: DeepMath - deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, 5–10 December 2016, Barcelona, Spain, pp. 2235–2243 (2016)Google Scholar
  3. 3.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. J. Logic Comput. 3(4), 217–247 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kühlwein, D., Urban, J.: A learning-based fact selector for Isabelle/HOL. J. Autom. Reasoning 57(3), 219–244 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formalized Reasoning 9(1), 101–148 (2016)MathSciNetGoogle Scholar
  6. 6.
    Eiter, T., Sands, D. (eds.): LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, Maun, Botswana, 7–12 May 2017, EPiC Series in Computing, vol. 46. EasyChair (2017)Google Scholar
  7. 7.
    Färber, M., Kaliszyk, C.: Random forests for premise selection. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 325–340. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24246-0_20CrossRefGoogle Scholar
  8. 8.
    Färber, M., Kaliszyk, C., Urban, J.: Monte carlo tableau proof search. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 563–579. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_34CrossRefGoogle Scholar
  9. 9.
    Gauthier, T., Kaliszyk, C.: Matching concepts across HOL libraries. In: Watt, S.M., Davenport, J.H., Sexton, A.P., Sojka, P., Urban, J. (eds.) CICM 2014. LNCS (LNAI), vol. 8543, pp. 267–281. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08434-3_20CrossRefGoogle Scholar
  10. 10.
    Gauthier, T., Kaliszyk, C., Urban, J.: TacticToe: learning to reason with HOL4 tactics. In: Eiter and Sands [6], pp. 125–143Google Scholar
  11. 11.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized Reasoning 3(2), 153–245 (2010)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using inferred automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 246–255. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_16CrossRefGoogle Scholar
  13. 13.
    Jakubův, J., Urban, J.: Extending E prover with similarity based clause selection strategies. In: Kohlhase, M., Johansson, M., Miller, B., de de Moura, L., Tompa, F. (eds.) CICM 2016. LNCS (LNAI), vol. 9791, pp. 151–156. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-42547-4_11CrossRefGoogle Scholar
  14. 14.
    Jakubuv, J., Urban, J.: BliStrTune: hierarchical invention of theorem proving strategies. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France, 16–17 January 2017, pp. 43–52. ACM (2017)Google Scholar
  15. 15.
    Jakubův, J., Urban, J.: ENIGMA: efficient learning-based inference guiding machine. In: Geuvers, H., England, M., Hasan, O., Rabe, F., Teschke, O. (eds.) CICM 2017. LNCS (LNAI), vol. 10383, pp. 292–302. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62075-6_20CrossRefGoogle Scholar
  16. 16.
    Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 389–398. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_27CrossRefGoogle Scholar
  17. 17.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J. Autom. Reasoning 53(2), 173–213 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connection prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48899-7_7CrossRefGoogle Scholar
  19. 19.
    Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reasoning 55(3), 245–256 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kaliszyk, C., Urban, J., Vyskočil, J.: Efficient semantic features for automated reasoning over large theories. In: Yang, Q., Wooldridge, M. (eds.) IJCAI 2015, pp. 3084–3090. AAAI Press (2015)Google Scholar
  21. 21.
    Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups: an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 151–164. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36675-8_8CrossRefzbMATHGoogle Scholar
  22. 22.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39799-8_1CrossRefGoogle Scholar
  23. 23.
    Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. In: Eiter and Sands [6], pp. 85–105Google Scholar
  24. 24.
    McCune, W., Wos, L.: Otter: the CADE-13 competition incarnations. J. Autom. Reasoning 18(2), 211–220 (1997). Special Issue on the CADE 13 ATP System CompetitionCrossRefGoogle Scholar
  25. 25.
    McCune, W.W.: Prover9 and Mace4 (2005–2010). http://www.cs.unm.edu/~mccune/prover9/. Accessed 29 Mar 2016
  26. 26.
    Otten, J., Bibel, W.: leanCoP: lean connection-based theorem proving. J. Symb. Comput. 36(1–2), 139–161 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schäfer, S., Schulz, S.: Breeding theorem proving heuristics with genetic algorithms. In: Gottlob, G., Sutcliffe, G., Voronkov, A. (eds.) Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia, 16–19 October 2015, EPiC Series in Computing, vol. 36, pp. 263–274. EasyChair (2015)Google Scholar
  28. 28.
    Schulz, S.: Learning search control knowledge for equational theorem proving. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 320–334. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45422-5_23CrossRefGoogle Scholar
  29. 29.
    Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36675-8_3CrossRefGoogle Scholar
  30. 30.
    Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_49CrossRefGoogle Scholar
  31. 31.
    Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-based theorem proving. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 330–345. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_23CrossRefGoogle Scholar
  32. 32.
    Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)CrossRefGoogle Scholar
  33. 33.
    Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T.P., Simonyan, K., Hassabis, D.: Mastering Chess and Shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815 (2017)Google Scholar
  34. 34.
    Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71067-7_6CrossRefGoogle Scholar
  35. 35.
    Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom. Reasoning 37(1–2), 21–43 (2006)zbMATHGoogle Scholar
  36. 36.
    Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover. In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793, pp. 263–277. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22119-4_21CrossRefGoogle Scholar
  37. 37.
    Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: case studies. J. Autom. Reasoning 16(3), 223–239 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zarathustra Goertzel
    • 1
  • Jan Jakubův
    • 1
  • Stephan Schulz
    • 2
  • Josef Urban
    • 1
  1. 1.Czech Technical University in PraguePragueCzech Republic
  2. 2.DHBW StuttgartStuttgartGermany

Personalised recommendations