Spectral Action in Noncommutative Geometry pp 113-119 | Cite as
Open Problems
Abstract
As a desert, we serve a number of open problems connected with the subject matter of the book. Some of them consider the general framework of spectral triples and its possible extensions, while the other are more specific and relate to the properties of the spectral action. The problems are essentially of mathematical nature, though, at least in some cases, the conceptual skeleton strongly depends upon the input from physics. To our mind, the solution to each of these stumbling blocks would advance our understanding of the foundations and implications of the Spectral Action Principle. We therefore cordially invite the Reader to contemplate the list below, both from mathematical and physical perspectives.
References
- 1.Baer, C., Strohmaier, A.: An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary. Am. J. Math. 1, 1 (2017). (to appear)Google Scholar
- 2.Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltig-keiten. Teubner-Texte zur Mathematik, vol. 41. Teubner, Leipzig (1981)zbMATHGoogle Scholar
- 3.Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
- 4.Bertozzini, P., Conti, R., Lewkeeratiyutkul, W.: Modular theory, non-commutative geometry and quantum gravity. SIGMA 6, 47p. (2010)MathSciNetzbMATHGoogle Scholar
- 5.Besnard, F., Nadir, B.: On the definition of spacetimes in noncommutative geometry: Part I. J. Geom. Phys. 123, 292–309 (2018). See also arXiv:1611.07842ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 6.Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)zbMATHCrossRefGoogle Scholar
- 7.Boyd, J.P.: The Devil’s invention: asymptotics, superasymptotics and hyperasymptotic series. Acta Appl. Math. 56, 1–98 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Brzeziński, T., Ciccoli, N., Dąbrowski, L., Sitarz, A.: Twisted reality condition for Dirac operators. Math. Phys. Anal. Geom. 19(3), 16 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.: Integration on locally compact noncommutative spaces. J. Funct. Anal. 263, 383–414 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index Theory for Locally Compact Noncommutative Geometries. Memoirs of the AMS, vol. 231. American Mathematical Society, Providence (2014)Google Scholar
- 11.Carey, A.L., Neshveyev, S., Nest, R., Rennie, A.: Twisted cyclic theory, equivariant KK-theory and KMS states. Journal für die reine und angewandte Mathematik 650, 161–191 (2011)MathSciNetzbMATHGoogle Scholar
- 12.Carey, A.L., Phillips, J., Rennie, A.: Semifinite spectral triples associated with graph \(C^*\)-algebras. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in Number Theory, Geometry and Quantum Fields, pp. 35–56. Vieweg, Wiesbaden (2008)Google Scholar
- 13.Chamseddine, A.H., Connes, A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 14.Christensen, E., Ivan, C.: Spectral triples for AF \(C^*\)-algebras and metrics on the Cantor set. J. Oper. Theory 56, 17–46 (2006)Google Scholar
- 15.Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221(1), 141–159 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 16.Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Colloquium Publications, vol. 55. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
- 17.Connes, A., Moscovici, H.: Type III and spectral triples. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in Number Theory, Geometry and Quantum Fields, pp. 57–71. Vieweg, Wiesbaden (2008)Google Scholar
- 18.Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27(3), 639–684 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Connes, A., Tretkoff, P.: The Gauss-Bonnet theorem for the noncommutative two torus. In: Consani, C., Connes, A. (eds.) Noncommutative Geometry, Arithmetic and Related Topics, pp. 141–158. The Johns Hopkins University Press, Baltimore (2011)zbMATHGoogle Scholar
- 20.D’Andrea, F., Kurkov, M.A., Lizzi, F.: Wick rotation and fermion doubling in noncommutative geometry. Phys. Rev. D 94, 025030 (2016)ADSMathSciNetCrossRefGoogle Scholar
- 21.Devastato, A., Farnsworth, S., Lizzi, F., Martinetti, P.: Lorentz signature and twisted spectral triples. J. High Energy Phys. 03(2018)089Google Scholar
- 22.Devastato, A., Martinetti, P.: Twisted spectral triple for the standard model and spontaneous breaking of the grand symmetry. Math. Phys. Anal. Geom. 20(2), 1–43 (2017)MathSciNetzbMATHGoogle Scholar
- 23.van den Dungen, K., Paschke, M., Rennie, A.: Pseudo-Riemannian spectral triples and the harmonic oscillator. J. Geom. Phys. 73, 37–55 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 24.van den Dungen, K., Rennie, A.: Indefinite Kasparov modules and pseudo-Riemannian manifolds. Ann. Henri Poincaré 17(11), 3255–3286 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 25.Eckstein, M.: The geometry of noncommutative spacetimes. Universe 3(1), 25 (2017)ADSCrossRefGoogle Scholar
- 26.Eckstein, M., Franco, N.: Causal structure for noncommutative geometry. In: Frontiers of Fundamental Physics, vol. 14 (2015). PoS(FFP14)138Google Scholar
- 27.Eckstein, M., Franco, N., Miller, T.: Noncommutative geometry of Zitterbewegung. Phys. Rev. D 95, 061701(R) (2017)ADSCrossRefGoogle Scholar
- 28.Eckstein, M., Zając, A.: Asymptotic and exact expansions of heat traces. Math. Phys. Anal. Geom. 18(1), 1–44 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Estrada, R., Fulling, S.A.: Distributional asymptotic expansions of spectral functions and of the associated Green kernels. Electron. J. Differ. Equ. 07, 1–37 (1999)MathSciNetzbMATHGoogle Scholar
- 30.Fathizadeh, F., Khalkhali, M.: Twisted spectral triples and Connes’s character formula. In: Khalkhali, M., Yu, G. (eds.) Perspectives on Noncommutative Geometry, pp. 79–102. AMS, Providence (2011)Google Scholar
- 31.Fathizadeh, F., Khalkhali, M.: Scalar curvature for the noncommutative torus. J. Noncommutative Geom. 7, 1145–1183 (2013)Google Scholar
- 32.Franco, N.: Lorentzian approach to noncommutative geometry. Ph.D. thesis, University of Namur FUNDP (2011). arXiv:1108.0592 [math-ph]
- 33.Franco, N.: Temporal Lorentzian spectral triples. Rev. Math. Phys. 26(08), 1430007 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Franco, N., Eckstein, M.: An algebraic formulation of causality for noncommutative geometry. Class. Quantum Gravity 30(13), 135007 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 35.Franco, N., Eckstein, M.: Exploring the causal structures of almost commutative geometries. SIGMA 10, 010 (2014)MathSciNetzbMATHGoogle Scholar
- 36.Franco, N., Eckstein, M.: Causality in noncommutative two-sheeted space-times. J. Geom. Phys. 96, 42–58 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 37.Franco, N., Wallet, J.C.: Metrics and causality on Moyal planes. Noncommutative Geometry and Optimal Transport. Contemporary Mathematics, vol. 676, pp. 147–173. American Mathematical Society, Providence (2016)zbMATHCrossRefGoogle Scholar
- 38.Gayral, V., Gracia-Bondía, J.M., Iochum, B., Schücker, T., Várilly, J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246(3), 569–623 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 39.Gayral, V., Iochum, B.: The spectral action for Moyal planes. J. Math. Phys. 46(4), 043503 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 40.Gayral, V., Wulkenhaar, R.: Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommutative Geom. 7(4), 939–979 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Greenfield, M., Marcolli, M., Teh, K.: Twisted spectral triples and quantum statistical mechanics. p-Adic numbers, ultrametric. Anal. Appl. 6(2), 81–104 (2014)MathSciNetzbMATHGoogle Scholar
- 42.Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Theoretical and Mathematical Physics. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
- 43.Hawkins, A., Skalski, A., White, S., Zacharias, J.: On spectral triples on crossed products arising from equicontinuous actions. Math. Scand. 113(2), 262–291 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Higson, N., Roe, J.: Analytic K-Homology. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
- 45.Iochum, B., Levy, C., Vassilevich, D.: Spectral action for torsion with and without boundaries. Commun. Math. Phys. 310(2), 367–382 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 46.Iochum, B., Masson, T.: Crossed product extensions of spectral triples. J. Noncommutative Geom. 10, 65–133 (2016)MathSciNetzbMATHGoogle Scholar
- 47.Iochum, B., Masson, T.: Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori. J. Geom. Phys. 129, 1–24 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 48.Kaad, J., Senior, R.: A twisted spectral triple for quantum \(SU(2)\). J. Geom. Phys. 62(4), 731–739 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 49.Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369(5), 431–548 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 50.Landi, G., Martinetti, P.: On twisting real spectral triples by algebra automorphisms. Lett. Math. Phys. 106, 1499–1530 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 51.Matassa, M.: Quantum dimension and quantum projective spaces. SIGMA 10, 097 (2014)MathSciNetzbMATHGoogle Scholar
- 52.Matassa, M., Yuncken, R.: Regularity of twisted spectral triples and pseudodifferential calculi. J. Noncommutative Geom. (to appear). arXiv:1705.04178 [math.OA]
- 53.Minguzzi, E.: Compactification of closed preordered spaces. Appl. Gen. Topol. 13(2), 207–223 (2012)MathSciNetzbMATHGoogle Scholar
- 54.Moscovici, H.: Local index formula and twisted spectral triples. Quanta of Maths. Clay Mathematics Proceedings, vol. 11, pp. 465–500. American Mathematical Society, Providence (2010)Google Scholar
- 55.Paschke, M., Sitarz, A.: Equivariant Lorentzian spectral triples (2006). arXiv:math-ph/0611029
- 56.Ponge, R., Wang, H.: Index map, \(\sigma \)-connections, and Connes–Chern character in the setting of twisted spectral triples. Kyoto J. Math. 56(2), 347–399 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 57.Rennie, A.: Smoothness and locality for nonunital spectral triples. K-theory 28(2), 127–165 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
- 58.Rennie, A.: Summability for nonunital spectral triples. K-theory 31(1), 71–100 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.Schrohe, E.: Complex powers of elliptic pseudodifferential operators. Integral Equ. Oper. Theory 9(3), 337–354 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
- 60.Sitarz, A.: Wodzicki residue and minimal operators on a noncommutative 4-dimensional torus. J. Pseudo-Differ. Oper. Appl. 5, 305–317 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics. World Scientific, New Jersey (2008)zbMATHCrossRefGoogle Scholar
- 62.Strohmaier, A.: On noncommutative and pseudo-Riemannian geometry. J. Geom. Phys. 56(2), 175–195 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 63.van Suijlekom, W.D.: The noncommutative Lorentzian cylinder as an isospectral deformation. J. Math. Phys. 45(1), 537–556 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
- 64.Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)zbMATHCrossRefGoogle Scholar