Open Problems

  • Michał EcksteinEmail author
  • Bruno Iochum
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 27)


As a desert, we serve a number of open problems connected with the subject matter of the book. Some of them consider the general framework of spectral triples and its possible extensions, while the other are more specific and relate to the properties of the spectral action. The problems are essentially of mathematical nature, though, at least in some cases, the conceptual skeleton strongly depends upon the input from physics. To our mind, the solution to each of these stumbling blocks would advance our understanding of the foundations and implications of the Spectral Action Principle. We therefore cordially invite the Reader to contemplate the list below, both from mathematical and physical perspectives.


  1. 1.
    Baer, C., Strohmaier, A.: An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary. Am. J. Math. 1, 1 (2017). (to appear)Google Scholar
  2. 2.
    Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltig-keiten. Teubner-Texte zur Mathematik, vol. 41. Teubner, Leipzig (1981)zbMATHGoogle Scholar
  3. 3.
    Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  4. 4.
    Bertozzini, P., Conti, R., Lewkeeratiyutkul, W.: Modular theory, non-commutative geometry and quantum gravity. SIGMA 6, 47p. (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Besnard, F., Nadir, B.: On the definition of spacetimes in noncommutative geometry: Part I. J. Geom. Phys. 123, 292–309 (2018). See also arXiv:1611.07842ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bognár, J.: Indefinite Inner Product Spaces. Springer, Berlin (1974)zbMATHCrossRefGoogle Scholar
  7. 7.
    Boyd, J.P.: The Devil’s invention: asymptotics, superasymptotics and hyperasymptotic series. Acta Appl. Math. 56, 1–98 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Brzeziński, T., Ciccoli, N., Dąbrowski, L., Sitarz, A.: Twisted reality condition for Dirac operators. Math. Phys. Anal. Geom. 19(3), 16 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.: Integration on locally compact noncommutative spaces. J. Funct. Anal. 263, 383–414 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index Theory for Locally Compact Noncommutative Geometries. Memoirs of the AMS, vol. 231. American Mathematical Society, Providence (2014)Google Scholar
  11. 11.
    Carey, A.L., Neshveyev, S., Nest, R., Rennie, A.: Twisted cyclic theory, equivariant KK-theory and KMS states. Journal für die reine und angewandte Mathematik 650, 161–191 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Carey, A.L., Phillips, J., Rennie, A.: Semifinite spectral triples associated with graph \(C^*\)-algebras. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in Number Theory, Geometry and Quantum Fields, pp. 35–56. Vieweg, Wiesbaden (2008)Google Scholar
  13. 13.
    Chamseddine, A.H., Connes, A.: Scale invariance in the spectral action. J. Math. Phys. 47, 063504 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Christensen, E., Ivan, C.: Spectral triples for AF \(C^*\)-algebras and metrics on the Cantor set. J. Oper. Theory 56, 17–46 (2006)Google Scholar
  15. 15.
    Connes, A., Landi, G.: Noncommutative manifolds, the instanton algebra and isospectral deformations. Commun. Math. Phys. 221(1), 141–159 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Connes, A., Marcolli, M.: Noncommutative Geometry, Quantum Fields and Motives. Colloquium Publications, vol. 55. American Mathematical Society, Providence (2008)zbMATHGoogle Scholar
  17. 17.
    Connes, A., Moscovici, H.: Type III and spectral triples. In: Albeverio, S., Marcolli, M., Paycha, S., Plazas, J. (eds.) Traces in Number Theory, Geometry and Quantum Fields, pp. 57–71. Vieweg, Wiesbaden (2008)Google Scholar
  18. 18.
    Connes, A., Moscovici, H.: Modular curvature for noncommutative two-tori. J. Am. Math. Soc. 27(3), 639–684 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Connes, A., Tretkoff, P.: The Gauss-Bonnet theorem for the noncommutative two torus. In: Consani, C., Connes, A. (eds.) Noncommutative Geometry, Arithmetic and Related Topics, pp. 141–158. The Johns Hopkins University Press, Baltimore (2011)zbMATHGoogle Scholar
  20. 20.
    D’Andrea, F., Kurkov, M.A., Lizzi, F.: Wick rotation and fermion doubling in noncommutative geometry. Phys. Rev. D 94, 025030 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Devastato, A., Farnsworth, S., Lizzi, F., Martinetti, P.: Lorentz signature and twisted spectral triples. J. High Energy Phys. 03(2018)089Google Scholar
  22. 22.
    Devastato, A., Martinetti, P.: Twisted spectral triple for the standard model and spontaneous breaking of the grand symmetry. Math. Phys. Anal. Geom. 20(2), 1–43 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    van den Dungen, K., Paschke, M., Rennie, A.: Pseudo-Riemannian spectral triples and the harmonic oscillator. J. Geom. Phys. 73, 37–55 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    van den Dungen, K., Rennie, A.: Indefinite Kasparov modules and pseudo-Riemannian manifolds. Ann. Henri Poincaré 17(11), 3255–3286 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Eckstein, M.: The geometry of noncommutative spacetimes. Universe 3(1), 25 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Eckstein, M., Franco, N.: Causal structure for noncommutative geometry. In: Frontiers of Fundamental Physics, vol. 14 (2015). PoS(FFP14)138Google Scholar
  27. 27.
    Eckstein, M., Franco, N., Miller, T.: Noncommutative geometry of Zitterbewegung. Phys. Rev. D 95, 061701(R) (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Eckstein, M., Zając, A.: Asymptotic and exact expansions of heat traces. Math. Phys. Anal. Geom. 18(1), 1–44 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Estrada, R., Fulling, S.A.: Distributional asymptotic expansions of spectral functions and of the associated Green kernels. Electron. J. Differ. Equ. 07, 1–37 (1999)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Fathizadeh, F., Khalkhali, M.: Twisted spectral triples and Connes’s character formula. In: Khalkhali, M., Yu, G. (eds.) Perspectives on Noncommutative Geometry, pp. 79–102. AMS, Providence (2011)Google Scholar
  31. 31.
    Fathizadeh, F., Khalkhali, M.: Scalar curvature for the noncommutative torus. J. Noncommutative Geom. 7, 1145–1183 (2013)Google Scholar
  32. 32.
    Franco, N.: Lorentzian approach to noncommutative geometry. Ph.D. thesis, University of Namur FUNDP (2011). arXiv:1108.0592 [math-ph]
  33. 33.
    Franco, N.: Temporal Lorentzian spectral triples. Rev. Math. Phys. 26(08), 1430007 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Franco, N., Eckstein, M.: An algebraic formulation of causality for noncommutative geometry. Class. Quantum Gravity 30(13), 135007 (2013)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Franco, N., Eckstein, M.: Exploring the causal structures of almost commutative geometries. SIGMA 10, 010 (2014)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Franco, N., Eckstein, M.: Causality in noncommutative two-sheeted space-times. J. Geom. Phys. 96, 42–58 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Franco, N., Wallet, J.C.: Metrics and causality on Moyal planes. Noncommutative Geometry and Optimal Transport. Contemporary Mathematics, vol. 676, pp. 147–173. American Mathematical Society, Providence (2016)zbMATHCrossRefGoogle Scholar
  38. 38.
    Gayral, V., Gracia-Bondía, J.M., Iochum, B., Schücker, T., Várilly, J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246(3), 569–623 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Gayral, V., Iochum, B.: The spectral action for Moyal planes. J. Math. Phys. 46(4), 043503 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Gayral, V., Wulkenhaar, R.: Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommutative Geom. 7(4), 939–979 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Greenfield, M., Marcolli, M., Teh, K.: Twisted spectral triples and quantum statistical mechanics. p-Adic numbers, ultrametric. Anal. Appl. 6(2), 81–104 (2014)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Theoretical and Mathematical Physics. Springer, Berlin (1996)zbMATHCrossRefGoogle Scholar
  43. 43.
    Hawkins, A., Skalski, A., White, S., Zacharias, J.: On spectral triples on crossed products arising from equicontinuous actions. Math. Scand. 113(2), 262–291 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Higson, N., Roe, J.: Analytic K-Homology. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  45. 45.
    Iochum, B., Levy, C., Vassilevich, D.: Spectral action for torsion with and without boundaries. Commun. Math. Phys. 310(2), 367–382 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Iochum, B., Masson, T.: Crossed product extensions of spectral triples. J. Noncommutative Geom. 10, 65–133 (2016)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Iochum, B., Masson, T.: Heat asymptotics for nonminimal Laplace type operators and application to noncommutative tori. J. Geom. Phys. 129, 1–24 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Kaad, J., Senior, R.: A twisted spectral triple for quantum \(SU(2)\). J. Geom. Phys. 62(4), 731–739 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369(5), 431–548 (2002)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Landi, G., Martinetti, P.: On twisting real spectral triples by algebra automorphisms. Lett. Math. Phys. 106, 1499–1530 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Matassa, M.: Quantum dimension and quantum projective spaces. SIGMA 10, 097 (2014)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Matassa, M., Yuncken, R.: Regularity of twisted spectral triples and pseudodifferential calculi. J. Noncommutative Geom. (to appear). arXiv:1705.04178 [math.OA]
  53. 53.
    Minguzzi, E.: Compactification of closed preordered spaces. Appl. Gen. Topol. 13(2), 207–223 (2012)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Moscovici, H.: Local index formula and twisted spectral triples. Quanta of Maths. Clay Mathematics Proceedings, vol. 11, pp. 465–500. American Mathematical Society, Providence (2010)Google Scholar
  55. 55.
    Paschke, M., Sitarz, A.: Equivariant Lorentzian spectral triples (2006). arXiv:math-ph/0611029
  56. 56.
    Ponge, R., Wang, H.: Index map, \(\sigma \)-connections, and Connes–Chern character in the setting of twisted spectral triples. Kyoto J. Math. 56(2), 347–399 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Rennie, A.: Smoothness and locality for nonunital spectral triples. K-theory 28(2), 127–165 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Rennie, A.: Summability for nonunital spectral triples. K-theory 31(1), 71–100 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Schrohe, E.: Complex powers of elliptic pseudodifferential operators. Integral Equ. Oper. Theory 9(3), 337–354 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Sitarz, A.: Wodzicki residue and minimal operators on a noncommutative 4-dimensional torus. J. Pseudo-Differ. Oper. Appl. 5, 305–317 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Strocchi, F.: An Introduction to the Mathematical Structure of Quantum Mechanics. World Scientific, New Jersey (2008)zbMATHCrossRefGoogle Scholar
  62. 62.
    Strohmaier, A.: On noncommutative and pseudo-Riemannian geometry. J. Geom. Phys. 56(2), 175–195 (2006)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    van Suijlekom, W.D.: The noncommutative Lorentzian cylinder as an isospectral deformation. J. Math. Phys. 45(1), 537–556 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Copernicus Center for Interdisciplinary StudiesKrakówPoland
  2. 2.Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakówPoland
  3. 3.National Quantum Information Centre, Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and InformaticsUniversity of GdańskGdańskPoland
  4. 4.Aix-Marseille Univ, Université de Toulon, CNRS, CPTMarseilleFrance

Personalised recommendations