Advertisement

Multi-agent System for the Recommendation of Electric Bicycle Routes

  • Daniel H. de la IglesiaEmail author
  • Álvaro Lozano Murciego
  • Alberto L. Barriuso
  • Gabriel Villarrubia
  • Juan F. de Paz
Conference paper
  • 1k Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 887)

Abstract

Nowadays, recommender systems are a key tool in sectors such as online sales, video playback and music on demand or book recommendation systems. This paper proposes a personalized route recommendation system for users of electric vehicles, specifically for e-bike users. Around the world e-bikes have become a real alternative to other motorized modes of transport and they are used for daily commuting. A multi-agent system is used to manage the information produced by the system, which generates route recommendations for users based on the routes they had travelled previously. Recommendations are provided to users through a smart-phone application, which is in charge of registering the data on the routes users travel.

Notes

Acknowledgements

This work has been supported by the GatEBike project: Arquitectura basada en Computación Social para el control Inteligente e Interacción en Bicicletas Eléctricas. RTC-2015-4171-4. Project co-financed with Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional (FEDER) funds (RETOS-COLABORACIÓN 2015). The research of Daniel Hernández de la Iglesia has been co-financed by the European Social Fund and Junta de Castilla y León (Operational Programme 2014–2020 for Castilla y León, EDU/529/2017 BOCYL). Álvaro Lozano is supported by the pre-doctoral fellowship from the University of Salamanca and Banco Santander. The research of Alberto López Barriuso has been co-financed by the European Social Fund and Junta de Castilla y León (Operational Programme 2014–2020 for Castilla y León, EDU/128/2015 BOCYL).

References

  1. 1.
    AMBE. Asociación de Marcas y Bicicletas de EspañaAMBE | Asociación de Marcas y Bicicletas de EspañaGoogle Scholar
  2. 2.
    Ling, Z., Cherry, C., MacArthur, J., Weinert, J.: Differences of cycling experiences and perceptions between E-Bike and bicycle users in the united states. Sustainability 9(10), 1662 (2017)CrossRefGoogle Scholar
  3. 3.
    Fishman, E., Cherry, C.: E-bikes in the mainstream: reviewing a decade of research. Transp. Rev. 36(1), 72–91 (2016)CrossRefGoogle Scholar
  4. 4.
    Citron, R.: Executive summary: electric bicycles Li-Ion and SLA E-bikes: drivetrain, motor, and battery technology trends, competitive landscape, and global market forecasts section 1 (2016)Google Scholar
  5. 5.
    Cherry, C.R., Yang, H., Jones, L.R., He, M.: Dynamics of electric bike ownership and use in Kunming, China. Transp. Policy 45, 127–135 (2016)CrossRefGoogle Scholar
  6. 6.
    La Iglesia, D.D., De Paz, J., González, G.V., Barriuso, A., Bajo, J., Corchado, J.: Increasing the intensity over time of an electric-assist bike based on the user and route: the bike becomes the gym. Sensors. 18(1), 220 (2018)CrossRefGoogle Scholar
  7. 7.
    De La Iglesia, D., Villarubia, G., De Paz, J., Bajo, J.: Multi-sensor information fusion for optimizing electric bicycle routes using a swarm intelligence algorithm. Sensors 17(11), 2501 (2017)CrossRefGoogle Scholar
  8. 8.
    Langford, B.C., Cherry, C.R., Bassett, D.R., Fitzhugh, E.C., Dhakal, N.: Comparing physical activity of pedal-assist electric bikes with walking and conventional bicycles. J. Transp. Heal. 6(July), 463–473 (2017)CrossRefGoogle Scholar
  9. 9.
    Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  10. 10.
    Schedl, M., Knees, P., McFee, B., Bogdanov, D., Kaminskas, M.: Music recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 453–492. Springer, Boston, MA (2015).  https://doi.org/10.1007/978-1-4899-7637-6_13CrossRefGoogle Scholar
  11. 11.
    Barriuso, A.L., de La Prieta, F., Murciego, Á.L., Hernández, D., Herrero, J.R.: An intelligent agent-based journalism platform. In: Bajo, J., Escalona, M.J., Giroux, S., Hoffa-Dąbrowska, P., Julián, V., Novais, P., Sánchez-Pi, N., Unland, R., Azambuja-Silveira, R. (eds.) PAAMS 2016. CCIS, vol. 616, pp. 322–332. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39387-2_27CrossRefGoogle Scholar
  12. 12.
    Abdel-Hafez, A., Xu, Y., Tian, N.: Item reputation-aware recommender systems. In: Proceedings of the 16th International Conference on Information Integration and Web-based Applications & Services - iiWAS 2014, pp. 79–86 (2014)Google Scholar
  13. 13.
    Ebikemotion® – Ebikes PlatformGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel H. de la Iglesia
    • 1
    Email author
  • Álvaro Lozano Murciego
    • 1
  • Alberto L. Barriuso
    • 1
  • Gabriel Villarrubia
    • 1
  • Juan F. de Paz
    • 1
  1. 1.BISITE Digital Innovation HubUniversity of Salamanca, Edificio Multiusos I+D+ISalamancaSpain

Personalised recommendations