Advertisement

Amplitude Amplification for Operator Identification and Randomized Classes

  • Debajyoti Bera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10976)

Abstract

Amplitude amplification (AA) is tool of choice for quantum algorithm designers to increase the success probability of query algorithms that reads its input in the form of oracle gates. Geometrically speaking, the technique can be understood as rotation in a specific two-dimensional space. We study and use a generalized form of this rotation operator to design algorithms in a geometric manner. Specifically, we apply AA to algorithms that take their input in the form of input states and in which rotations with different angles and directions are used in a unified manner. We show that AA can be used to sequentially discriminate between two unitary operators, both without error and with bounded-error, in an asymptotically optimal manner. We also show how to reduce error probability in one and two-sided bounded error algorithms more efficiently than the usual parallel repetitions technique; in particular, errors can be completely eliminated from the exact error algorithms.

References

  1. 1.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th STOC (1996)Google Scholar
  2. 2.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ozols, M., Roetteler, M., Roland, J.: Quantum rejection sampling. ACM Trans. Comput. Theory 5(3), 1–33 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kobayashi, H., Matsumoto, K., Tani, S.: Simpler exact leader election via quantum reduction. Chic. J. Theor. Comput. Sci. 2014(10) (2014)Google Scholar
  5. 5.
    Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision for simulating sparse Hamiltonians. In: Proceedings of the 46th STOC (2014)Google Scholar
  6. 6.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplication and estimation. Contemp. Math. 305, 53–74 (2002)CrossRefGoogle Scholar
  7. 7.
    Yoder, T.J., Low, G.H., Chuang, I.L.: Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113, 210501 (2014). https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.210501CrossRefGoogle Scholar
  8. 8.
    Lipton, R.J., Regan, K.W.: Quantum Algorithms via Linear Algebra: A Primer. The MIT Press, Cambridge (2014)zbMATHGoogle Scholar
  9. 9.
    Kawachi, A., Kawano, K., Le Gall, F., Tamaki, S.: Quantum query complexity of unitary operator discrimination. In: Cao, Y., Chen, J. (eds.) COCOON 2017. LNCS, vol. 10392, pp. 309–320. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-62389-4_26CrossRefGoogle Scholar
  10. 10.
    Bera, D.: Detection and diagnosis of single faults in quantum circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 37(3), 587–600 (2018)CrossRefGoogle Scholar
  11. 11.
    Acin, A.: Statistical distinguishability between unitary operations. Phys. Rev. Lett. 87(17), 177901 (2001)CrossRefGoogle Scholar
  12. 12.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60(4), 2742 (1999)CrossRefGoogle Scholar
  14. 14.
    Biham, E., Kenigsberg, D.: Grover’s quantum search algorithm for an arbitrary initial mixed state. Phys. Rev. A 66(6), 062301 (2002)CrossRefGoogle Scholar
  15. 15.
    Høyer, P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62(5), 052304 (2000)CrossRefGoogle Scholar
  16. 16.
    D’Ariano, G.M., Presti, P.L., Paris, M.G.: Using entanglement improves the precision of quantum measurements. Phys. Rev. Lett. 87(27), 270404 (2001)CrossRefGoogle Scholar
  17. 17.
    Duan, R., Feng, Y., Ying, M.: Entanglement is not necessary for perfect discrimination between unitary operations. Phys. Rev. Lett. 98(10), 100503 (2007)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bera, D.: Amplitude amplification for operator identification and randomized classes. Technical report TR14-151. Electronic Colloquium on Computational Complexity (2018)Google Scholar
  19. 19.
    Bera, D., Green, F., Homer, S.: Small depth quantum circuits. ACM SIGACT News 38(2), 35–50 (2007)CrossRefGoogle Scholar
  20. 20.
    Høyer, P., de Wolf, R.: Improved quantum communication complexity bounds for disjointness and equality. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 299–310. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45841-7_24CrossRefGoogle Scholar
  21. 21.
    Buhrman, H., de Wolf, R.: Communication complexity lower bounds by polynomials. In: Proceedings of the 16th CCC (2001)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indraprastha Institute of Information Technology-Delhi (IIIT-D)New DelhiIndia

Personalised recommendations