Advertisement

Polygon Queries for Convex Hulls of Points

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10976)

Abstract

We study the following range searching problem: Preprocess a set P of n points in the plane with respect to a set \(\mathcal {O}\) of k orientations in the plane so that given an \(\mathcal {O}\)-oriented convex polygon Q as a query, the convex hull of \(P\cap Q\), and its perimeter and area, can be reported efficiently, where an \(\mathcal {O}\)-oriented polygon is a polygon whose edges have orientations in \(\mathcal {O}\). We present a data structure with \(O(nk^3\log ^2n)\) space and \(O(nk^3\log ^2n)\) construction time, and a query algorithm to compute the perimeter or area of the convex hull of \(P\cap Q\) in \(O(s\log ^2n)\) time for any query \(\mathcal {O}\)-oriented convex s-gon Q. For reporting the convex hull, O(h) is added to the running times of query algorithms, where h is the complexity of the convex hull.

References

  1. 1.
    Abrahamsen, M., de Berg, M., Buchin, K., Mehr, M., Mehrabi, A.D.: Minimum perimeter-sum partitions in the plane. In: Proceedings of the 33rd International Symposium on Computational Geometry (SoCG 2017), pp. 4:1–4:15 (2017)Google Scholar
  2. 2.
    Agarwal, P.K., Erickson, J.: Geometric range searching and its relatives. In: Chazelle, B., Goodman, J.E., Pollack, R. (eds.) Advances in Discrete and Computational Geometry. Contemporary Mathematics, vol. 223, pp. 1–56. American Mathematical Society Press (1999)Google Scholar
  3. 3.
    Agarwal, P.K., Kaplan, H., Rubin, N., Sharir, M.: Kinetic Voronoi diagrams and Delaunay triangulations under polygonal distance functions. Discrete Comput. Geom. 54(4), 871–904 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Agarwal, P.K., Matoušek, J.: Ray shooting and parametric search. SIAM J. Comput. 22(4), 794–806 (1993)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Brass, P., Knauer, C., Shin, C.S., Schmid, M., Vigan, I.: Range-aggregate queries for geometric extent problems. In: Proceedings of the 19th Computing: Australasian Theory Symposium (CATS 2013), vol. 141, pp. 3–10 (2013)Google Scholar
  6. 6.
    Chazelle, B.: Filtering search: a new approach to query answering. SIAM J. Comput. 15(3), 703–724 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chazelle, B.: Lower bounds for orthogonal range searching: I. the reporting case. J. ACM 37(2), 200–212 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chazelle, B., Welzl, E.: Quasi-optimal range searching in spaces of finite VC-dimension. Discrete Comput. Geom. 4(5), 467–489 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chen, Z., Papadopoulou, E., Jinhui, X.: Robustness of \(k\)-gon Voronoi diagram construction. Inf. Process. Lett. 97(4), 138–145 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77974-2CrossRefzbMATHGoogle Scholar
  11. 11.
    de Berg, M., Halperin, D., Overmars, M., Snoeyink, J., van Kreveld, M.: Efficient ray shooting and hidden surface removal. Algorithmica 12(1), 30–53 (1994)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51, 107–113 (2008)CrossRefGoogle Scholar
  13. 13.
    Edelsbrunner, H., Welzl, E.: Halfplanar range search in linear space and \(O(n^{0.695})\) query time. Inf. Process. Lett. 23, 289–293 (1986)CrossRefGoogle Scholar
  14. 14.
    Moidu, N., Agarwal, J., Kothapalli, K.: Planar convex hull range query and related problems. In: Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG 2013), pp. 307–310 (2013)Google Scholar
  15. 15.
    Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J. Comput. Syst. Sci. 23(2), 166–204 (1981)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Souvaine, D.L., Bjorling-Sachs, I.: The contour problem for restricted-orientation polygons. Proc. IEEE 80(9), 1449–1470 (1992)CrossRefGoogle Scholar
  17. 17.
    Widmayer, P., Ying-Fung, W., Wong, C.-K.: On some distance problems in fixed orientations. SIAM J. Comput. 16(4), 728–746 (1987)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Willard, D.E.: Polygon retrieval. SIAM J. Comput. 11(1), 149–165 (1982)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Pohang University of Science and TechnologyPohangKorea

Personalised recommendations