Advertisement

After Galois

  • Jeremy Gray
Chapter
Part of the Springer Undergraduate Mathematics Series book series (SUMS)

Abstract

Galois’s theory was considered very difficult in its day, and was also poorly published. This chapter looks at what had to happen before it could become mainstream mathematics, and how as it did so it changed ideas about what constitutes algebra and started a move to create a theory of groups.

References

  1. Edwards, H.M.: The construction of solvable polynomials. Bull. Am. Math. Soc. 46, 397–411 (2009); corrigenda 703–704Google Scholar
  2. Galois, É.: Oeuvres Mathématiques d’Évariste Galois, notes by J. Liouville. J. Math. 11, 381–444 (1846). (See (Neumann 2011) below.)Google Scholar
  3. Kiernan, B.M.: The development of Galois theory from Lagrange to Artin. Arch. Hist. Exact Sci. 8, 40–154 (1971)MathSciNetCrossRefGoogle Scholar
  4. Kronecker, L.: Ueber die algebraisch auflösbaren Gleichungen, pp. 365–374. Akademie der Wissenschaften, Berlin, Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin (1853); in Werke, IV, 1–11Google Scholar
  5. Kronecker, L.: Auseinandersetzung einiger Eigenschaften der Klassenzahl idealer complexen Zahlen. Akademie der Wissenschaften, Berlin (1870); in Werke, I, 271–282Google Scholar
  6. Lützen, J.: Joseph Liouville, 1809–1882. Master of Pure and Applied Mathematics. Springer, Berlin (1990)Google Scholar
  7. Purkert, W.: Ein Manuskript Dedekinds über Galois-Theorie. NTM Schr. Geschichte Naturwiss. Tech. Medizin 13, 1–16 (1976)MathSciNetMATHGoogle Scholar
  8. Taton, R.: Les relations d’Evariste Galois avec les mathématiciens de son temps. Revue d’histoire des sciences et de leurs applications 1, 114–130 (1947)MathSciNetCrossRefGoogle Scholar
  9. Wussing, H.: The Genesis of the Abstract Group Concept, transl. A. Shenitzer. MIT Press, Cambridge (1984)MATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jeremy Gray
    • 1
    • 2
  1. 1.School of Mathematics and StatisticsThe Open UniversityMilton KeynesUK
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations