Intercostal Artery Reattachment Guided by Intraoperative Neurophysiologic Monitoring During Open Thoracoabdominal Aortic Repair: Basic Principles and Clinical Experience

  • Ubaldo Del CarroEmail author
  • Francesca Bianchi
  • Marco Cursi
  • Heike Caravati


Intraoperative neurophysiological monitoring (IOM) can promptly detect spinal cord ischemia (SCI) during thoracoabdominal aortic aneurysm (TAAA) repair. Early detection of SCI gives the team the opportunity to trigger interventions for maximizing spinal cord perfusion and potentially reverse spinal injury before ischemia evolves in infarction and permanent paraplegia. Literature data support the use of IOM as a strategy to manage hemodynamic optimization and to guide reimplantation of intercostal arteries, providing a level B of evidence. IOM can play a role in guiding a selective reattachment of the principal spinal cord feeder arteries, avoiding unnecessary reimplantation, and provide real-time information on the effectiveness of surgical interventions. IOM can be used to assess the several factors that may contribute to SCI in order to guide specific corrective measures, focusing efforts only on the necessary maneuvers and avoiding unnecessary and time-consuming procedures.


  1. 1.
    Melissano G, Bertoglio L, Mascia D, Rinaldi E, Del Carro U, Nardelli P, et al. Spinal cord ischemia is multifactorial: what is the best protocol? J Cardiovasc Surg. 2016;57(2):191–201.Google Scholar
  2. 2.
    Kahn RA, Stone ME, Moskowitz DM. Anesthetic consideration for descending thoracic aortic aneurysm repair. Semin Cardiothorac Vasc Anesth. 2007;11(3):205–23.CrossRefGoogle Scholar
  3. 3.
    Greenberg RK, Lytle B. Endovascular repair of thoracoabdominal aneurysms. Circulation. 2008;117(17):2288–96.CrossRefGoogle Scholar
  4. 4.
    Cambria RP, Davison JK, Carter C, Brewster DC, Chang Y, Clark KA, et al. Epidural cooling for spinal cord protection during thoracoabdominal aneurysm repair: a five-year experience. J Vasc Surg. 2000;31(6):1093–102.CrossRefGoogle Scholar
  5. 5.
    Coselli JS, Bozinovski J, LeMaire SA. Open surgical repair of 2286 thoracoabdominal aortic aneurysms. Ann Thorac Surg. 2007;83(2):S862–4. discussion S890–892CrossRefGoogle Scholar
  6. 6.
    Kieffer E, Chiche L, Godet G, Koskas F, Bahnini A, Bertrand M, et al. Type IV thoracoabdominal aneurysm repair: predictors of postoperative mortality, spinal cord injury, and acute intestinal ischemia. Ann Vasc Surg. 2008;22(6):822–8.CrossRefGoogle Scholar
  7. 7.
    Bicknell CD, Cowan AR, Kerle MI, Mansfield AO, Cheshire NJW, Wolfe JHN. Renal dysfunction and prolonged visceral ischaemia increase mortality rate after suprarenal aneurysm repair. Br J Surg. 2003;90(9):1142–6.CrossRefGoogle Scholar
  8. 8.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv. 2010;76(2):E43–86.CrossRefGoogle Scholar
  9. 9.
    Sloan TB, Edmonds HL, Koht A. Intraoperative electrophysiologic monitoring in aortic surgery. J Cardiothorac Vasc Anesth. 2013;27(6):1364–73.CrossRefGoogle Scholar
  10. 10.
    Nielsen VK, Kardel T. Temporospatial effects on orthodromic sensory potential propagation during ischemia. Ann Neurol. 1981;9(6):597–604.CrossRefGoogle Scholar
  11. 11.
    Tanaka Y, Kawaguchi M, Noguchi Y, Yoshitani K, Kawamata M, Masui K, et al. Systematic review of motor evoked potentials monitoring during thoracic and thoracoabdominal aortic aneurysm open repair surgery: a diagnostic meta-analysis. J Anesth. 2016;30(6):1037–50.CrossRefGoogle Scholar
  12. 12.
    Svensson LG, Rickards E, Coull A, Rogers G, Fimmel CJ, Hinder RA. Relationship of spinal cord blood flow to vascular anatomy during thoracic aortic cross-clamping and shunting. J Thorac Cardiovasc Surg. 1986;91(1):71–8.PubMedGoogle Scholar
  13. 13.
    Marini CP, Levison J, Caliendo F, Nathan IM, Cohen JR. Control of proximal hypertension during aortic cross-clamping: its effect on cerebrospinal fluid dynamics and spinal cord perfusion pressure. Semin Thorac Cardiovasc Surg. 1998;10(1):51–6.CrossRefGoogle Scholar
  14. 14.
    Marsala M, Sorkin LS, Yaksh TL. Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1994;14(4):604–14.CrossRefGoogle Scholar
  15. 15.
    Acher CW, Wynn MM, Hoch JR, Popic P, Archibald J, Turnipseed WD. Combined use of cerebral spinal fluid drainage and naloxone reduces the risk of paraplegia in thoracoabdominal aneurysm repair. J Vasc Surg. 1994;19(2):236–46. discussion 247–248CrossRefGoogle Scholar
  16. 16.
    Christiansson L, Ulus AT, Hellberg A, Bergqvist D, Wiklund L, Karacagil S. Aspects of the spinal cord circulation as assessed by intrathecal oxygen tension monitoring during various arterial interruptions in the pig. J Thorac Cardiovasc Surg. 2001;121(4):762–72.CrossRefGoogle Scholar
  17. 17.
    Williams GM, Roseborough GS, Webb TH, Perler BA, Krosnick T. Preoperative selective intercostal angiography in patients undergoing thoracoabdominal aneurysm repair. J Vasc Surg. 2004;39(2):314–21.CrossRefGoogle Scholar
  18. 18.
    Griepp RB, Ergin MA, Galla JD, Lansman S, Khan N, Quintana C, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1996;112(5):1202–13. discussion 1213–1215CrossRefGoogle Scholar
  19. 19.
    Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P. Arterial vascularization of the spinal cord. Recent studies of the anastomotic substitution pathways. J Neurosurg. 1971;35(3):253–62.CrossRefGoogle Scholar
  20. 20.
    Acher CW, Wynn MM, Mell MW, Tefera G, Hoch JR. A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann Surg. 2008;248(4):529–40.PubMedGoogle Scholar
  21. 21.
    Etz CD, Halstead JC, Spielvogel D, Shahani R, Lazala R, Homann TM, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82(5):1670–7.CrossRefGoogle Scholar
  22. 22.
    Cambria RP, Clouse WD, Davison JK, Dunn PF, Corey M, Dorer D. Thoracoabdominal aneurysm repair: results with 337 operations performed over a 15-year interval. Ann Surg. 2002;236(4):471–9. discussion 479CrossRefGoogle Scholar
  23. 23.
    Yamada N, Takamiya M, Kuribayashi S, Okita Y, Minatoya K, Tanaka R. MRA of the Adamkiewicz artery: a preoperative study for thoracic aortic aneurysm. J Comput Assist Tomogr. 2000;24(3):362–8.CrossRefGoogle Scholar
  24. 24.
    Kawaharada N, Morishita K, Fukada J, Yamada A, Muraki S, Hyodoh H, et al. Thoracoabdominal or descending aortic aneurysm repair after preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2002;21(6):970–4.CrossRefGoogle Scholar
  25. 25.
    Jacobs MJ, de Mol BA, Elenbaas T, Mess WH, Kalkman CJ, Schurink GW, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg. 2002;35(1):30–7.CrossRefGoogle Scholar
  26. 26.
    van Dongen EP, Schepens MA, Morshuis WJ, ter Beek HT, Aarts LP, de Boer A, et al. Thoracic and thoracoabdominal aortic aneurysm repair: use of evoked potential monitoring in 118 patients. J Vasc Surg. 2001;34(6):1035–40.CrossRefGoogle Scholar
  27. 27.
    Ogino H, Sasaki H, Minatoya K, Matsuda H, Yamada N, Kitamura S. Combined use of adamkiewicz artery demonstration and motor-evoked potentials in descending and thoracoabdominal repair. Ann Thorac Surg. 2006;82(2):592–6.CrossRefGoogle Scholar
  28. 28.
    Takahashi S, Orihashi K, Imai K, Mizukami T, Takasaki T, Sueda T. Cold blood spinoplegia under motor-evoked potential monitoring during thoracic aortic surgery. J Thorac Cardiovasc Surg. 2011;141(3):755–61.CrossRefGoogle Scholar
  29. 29.
    Crawford ES, Mizrahi EM, Hess KR, Coselli JS, Safi HJ, Patel VM. The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg. 1988;95(3):357–67.PubMedGoogle Scholar
  30. 30.
    Shiiya N, Yasuda K, Matsui Y, Sakuma M, Sasaki S. Spinal cord protection during thoracoabdominal aortic aneurysm repair: results of selective reconstruction of the critical segmental arteries guided by evoked spinal cord potential monitoring. J Vasc Surg. 1995;21(6):970–5.CrossRefGoogle Scholar
  31. 31.
    Jacobs MJ, Meylaerts SA, de Haan P, de Mol BA, Kalkman CJ. Strategies to prevent neurologic deficit based on motor-evoked potentials in type I and II thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1999;29(1):48–57. discussion 57–59CrossRefGoogle Scholar
  32. 32.
    Svensson LG, Patel V, Robinson MF, Ueda T, Roehm JO, Crawford ES. Influence of preservation or perfusion of intraoperatively identified spinal cord blood supply on spinal motor evoked potentials and paraplegia after aortic surgery. J Vasc Surg. 1991;13(3):355–65.CrossRefGoogle Scholar
  33. 33.
    Svensson LG, Hess KR, Coselli JS, Safi HJ. Influence of segmental arteries, extent, and atriofemoral bypass on postoperative paraplegia after thoracoabdominal aortic operations. J Vasc Surg. 1994;20(2):255–62.CrossRefGoogle Scholar
  34. 34.
    Etz CD, Kari FA, Mueller CS, Silovitz D, Brenner RM, Lin H-M, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141(4):1020–8.CrossRefGoogle Scholar
  35. 35.
    Biglioli P, Roberto M, Cannata A, Parolari A, Fumero A, Grillo F, et al. Upper and lower spinal cord blood supply: the continuity of the anterior spinal artery and the relevance of the lumbar arteries. J Thorac Cardiovasc Surg. 2004;127(4):1188–92.CrossRefGoogle Scholar
  36. 36.
    Park KH, Lim C, Kim TH, Park I, Jung Y. Outcome of extensive descending aorta repair adopting present concepts of spinal cord preservation. J Cardiovasc Surg. 2016;57(1):58–65.Google Scholar
  37. 37.
    Uezu T, Koja K, Kuniyoshi Y, Miyagi K, Shimoji M, Arakaki K, et al. Blood distribution to the anterior spinal artery from each segment of intercostal and lumbar arteries. J Cardiovasc Surg. 2003;44(5):637–45.Google Scholar
  38. 38.
    Conrad MF, Ergul EA, Patel VI, Cambria MR, Lamuraglia GM, Simon M, et al. Evolution of operative strategies in open thoracoabdominal aneurysm repair. J Vasc Surg. 2011;53(5):1195–1201.e1.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ubaldo Del Carro
    • 1
    Email author
  • Francesca Bianchi
    • 2
  • Marco Cursi
    • 2
  • Heike Caravati
    • 2
  1. 1.Department of Neurology and INSPEVita-Salute University, San Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Neurology and INSPESan Raffaele Scientific InstituteMilanItaly

Personalised recommendations