Advertisement

Perioperative Renal Pharmacological Protection During Cardiovascular Surgery

  • Alessandro Belletti
  • Margherita Licheri
  • Tiziana BoveEmail author
Chapter

Abstract

Acute kidney injury (AKI) occurs frequently after aortic surgery and is associated with increased perioperative and long-term morbidity and mortality. Patients undergoing aortic surgery are considered at high risk for postoperative AKI both due to surgery-specific factors (e.g., suprarenal aortic cross-clamp) and presence of comorbidities. Despite being less invasive, endovascular procedures also carry a high risk of AKI. Therefore, several pharmacological interventions aimed at preventing or treating have been investigated in recent years.

Unfortunately, up to now, no specific drug has been convincingly found to be effective in reducing AKI incidence or improving disease course, including dopamine, fenoldopam, levosimendan, vasopressin, and diuretics. Avoiding the administration of nephrotoxic drugs, such as nonsteroidal anti-inflammatory drugs, is the most effective preventive strategy, together with general hemodynamic management. The latter include the maintenance of mean arterial pressure (MAP) generally greater than 65 mmHg, avoidance of both hypovolemia and excessive fluid administration, and the maintenance of adequate cardiac output. However, patient management should be individualized depending on the risk of developing AKI. Further research in developing specific strategies for the different risk classes is urgently required.

References

  1. 1.
    Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756–66.  https://doi.org/10.1016/S0140-6736(11)61454-2.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 2005;16(11):3365–70.CrossRefGoogle Scholar
  3. 3.
    Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014;9(1):12–20.  https://doi.org/10.2215/CJN.02730313.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang HE, Muntner P, Chertow GM, Warnock DG. Acute kidney injury and mortality in hospitalized patients. Am J Nephrol. 2012;35(4):349–55.  https://doi.org/10.1159/000337487.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Doyle J, Forni L. Acute kidney injury: short-term and long-term effects. Crit Care. 2016;20:188.CrossRefGoogle Scholar
  6. 6.
    Bellomo R, Ronco C, Mehta RL, Asfar P, Boisramé-Helms J, Darmon M, et al. Acute kidney injury in the ICU: from injury to recovery: reports from the 5th Paris International Conference. Ann Intensive Care. 2017;7(1):49.  https://doi.org/10.1186/s13613-017-0260-y.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lewington AJ, Cerdá J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 2013;84(3):457–67.  https://doi.org/10.1038/ki.2013.153.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Mehta RL, Cerdá J, Burdmann EA, Tonelli M, García-García G, Jha V, et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet. 2015;385(9987):2616–43.  https://doi.org/10.1016/S0140-6736(15)60126-X.CrossRefPubMedGoogle Scholar
  9. 9.
    Wonnacott A, Meran S, Amphlett B, Talabani B, Phillips A. Epidemiology and outcomes in community-acquired versus hospital-acquired AKI. Clin J Am Soc Nephrol. 2014;9(6):1007–14.  https://doi.org/10.2215/CJN.07920713.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013;17(1):204.  https://doi.org/10.1186/cc11454.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grams ME, Sang Y, Coresh J, Ballew S, Matsushita K, Molnar MZ, et al. Acute kidney injury after major surgery: a retrospective analysis of veterans health administration data. Am J Kidney Dis. 2016;67(6):872–80.  https://doi.org/10.1053/j.ajkd.2015.07.022.CrossRefPubMedGoogle Scholar
  12. 12.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative Work Group. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Crit Care. 2004;8(4):R204–12.CrossRefGoogle Scholar
  13. 13.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.  https://doi.org/10.1186/cc5713.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lassnigg A, Schmidlin D, Mouhieddine M, Bachmann LM, Druml W, Bauer P, et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J Am Soc Nephrol. 2004;15(6):1597–605.CrossRefGoogle Scholar
  15. 15.
    Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138.CrossRefGoogle Scholar
  16. 16.
    Twine CP, Boyle JR. Renal dysfunction after EVAR: time for a standard definition. J Endovasc Ther. 2013;20(3):331–3.  https://doi.org/10.1583/12-4104C.1.CrossRefPubMedGoogle Scholar
  17. 17.
    Coselli JS, LeMaire SA, Preventza O, de la Cruz KI, Cooley DA, Price MD, et al. Outcomes of 3309 thoracoabdominal aortic aneurysm repairs. J Thorac Cardiovasc Surg. 2016;151(5):1323–37.  https://doi.org/10.1016/j.jtcvs.2015.12.050.CrossRefPubMedGoogle Scholar
  18. 18.
    Tshomba Y, Kahlberg A, Melissano G, Coppi G, Marone E, Ferrari D, et al. Comparison of renal perfusion solutions during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 2014;59(3):623–33.  https://doi.org/10.1016/j.jvs.2013.09.055.CrossRefPubMedGoogle Scholar
  19. 19.
    Wynn MM, Acher C, Marks E, Engelbert T, Acher CW. Postoperative renal failure in thoracoabdominal aortic aneurysm repair with simple cross-clamp technique and 4°C renal perfusion. J Vasc Surg. 2015;61(3):611–22.  https://doi.org/10.1016/j.jvs.2014.10.040.CrossRefPubMedGoogle Scholar
  20. 20.
    Roh GU, Lee JW, Nam SB, Lee J, Choi JR, Shim YH. Incidence and risk factors of acute kidney injury after thoracic aortic surgery for acute dissection. Ann Thorac Surg. 2012;94(3):766–71.  https://doi.org/10.1016/j.athoracsur.2012.04.057.CrossRefPubMedGoogle Scholar
  21. 21.
    Tsai HS, Tsai FH, Chen YC, Wu ML, Chen SW, Chu JJ, et al. Impact of acute kidney injury on one-year survival after surgery for aortic dissection. Ann Thorac Surg. 2012;94:1407–12.CrossRefGoogle Scholar
  22. 22.
    Sasabuchi Y, Kimura N, Shiotsuka J, Komuro T, Mouri H, Ohnuma T, et al. Long-term survival in patients with acute kidney injury after acute type a aortic dissection repair. Ann Thorac Surg. 2016;102(6):2003–9.  https://doi.org/10.1016/j.athoracsur.2016.05.006.CrossRefPubMedGoogle Scholar
  23. 23.
    Dariane C, Coscas R, Boulitrop C, Javerliat I, Vilaine E, Goeau-Brissonniere O, et al. Acute kidney injury after open repair of intact abdominal aortic aneurysms. Ann Vasc Surg. 2017;39:294–300.  https://doi.org/10.1016/j.avsg.2016.09.010.CrossRefPubMedGoogle Scholar
  24. 24.
    Kopolovic I, Simmonds K, Duggan S, Ewanchuk M, Stollery DE, Bagshaw SM, et al. Risk factors and outcomes associated with acute kidney injury following ruptured abdominal aortic aneurysm. BMC Nephrol. 2013;14:99.  https://doi.org/10.1186/1471-2369-14-99.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van Beek SC, Legemate DA, Vahl A, Wisselink W, Barnes M, Fitridge RA, et al. External validation of the Endovascular aneurysm repair Risk Assessment model in predicting survival, reinterventions, and endoleaks after endovascular aneurysm repair. J Vasc Surg. 2014;59(6):1555–1561.e1.  https://doi.org/10.1016/j.jvs.2013.12.043.CrossRefPubMedGoogle Scholar
  26. 26.
    Jalalzadeh H, Indrakusuma R, Vogt L, van Beek SC, Vahl AC, Wisselink W, et al. Long-term survival after acute kidney injury following ruptured abdominal aortic aneurysm repair. J Vasc Surg. 2017;66(6):1712.e2–8.e2.  https://doi.org/10.1016/j.jvs.2017.04.049.CrossRefGoogle Scholar
  27. 27.
    Piffaretti G, Benedetto F, Menegolo M, Antonello M, Tarallo A, Grego F. Outcomes of endovascular repair for blunt thoracic aortic injury. J Vasc Surg. 2013;6:1483–9.  https://doi.org/10.1016/j.jvs.2013.05.096.CrossRefGoogle Scholar
  28. 28.
    Drews JD, Patel HJ, Williams DM, Dasika NL, Deeb GM. The impact of acute renal failure on early and late outcomes after thoracic aortic endovascular repair. Ann Thorac Surg. 2014;97(6):2027–33.  https://doi.org/10.1016/j.athoracsur.2014.02.045.CrossRefPubMedGoogle Scholar
  29. 29.
    Jeon YH, Bae CH. The risk factors and outcomes of acute kidney injury after thoracic endovascular aortic repair. Korean J Thorac Cardiovasc Surg. 2016;49(1):15–21.  https://doi.org/10.5090/kjtcs.2016.49.1.15.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Luo S, Ding H, Luo J, Li W, Ning B, Liu Y, et al. Risk factors and early outcomes of acute renal injury after thoracic aortic endograft repair for type B aortic dissection. Ther Clin Risk Manag. 2017;13:1023–9.  https://doi.org/10.2147/TCRM.S131456.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Jhaveri KD, Saratzis AN, Wanchoo R, Sarafidis PA. Endovascular aneurysm repair (EVAR)- and transcatheter aortic valve replacement (TAVR)-associated acute kidney injury. Kidney Int. 2017;91(6):1312–23.  https://doi.org/10.1016/j.kint.2016.11.030.CrossRefPubMedGoogle Scholar
  32. 32.
    Ichai C, Vinsonneau C, Souweine B, Armando F, Canet E, Clec’h C, et al. Acute kidney injury in the perioperative period and in intensive care units (excluding renal replacement therapies). Ann Intensive Care. 2016;6(1):48.  https://doi.org/10.1186/s13613-016-0145-5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. J Am Soc Nephrol. 2005;16(1):162–8.CrossRefGoogle Scholar
  34. 34.
    Mehta RH, Grab JD, O’Brien SM, Bridges CR, Gammie JS, Haan CK, Society of Thoracic Surgeons National Cardiac Surgery Database Investigators, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16.. quiz 2208.CrossRefGoogle Scholar
  35. 35.
    Chertow GM, Lazarus JM, Christiansen CL, Cook EF, Hammermeister KE, Grover F, et al. Preoperative renal risk stratification. Circulation. 1997;95(4):878–84.CrossRefGoogle Scholar
  36. 36.
    Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. JAMA. 2007;297(16):1801–9.CrossRefGoogle Scholar
  37. 37.
    Brown JR, Cochran RP, Leavitt BJ, Dacey LJ, Ross CS, MacKenzie TA, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery. Circulation. 2007;116(11 Suppl):I139–43.  https://doi.org/10.1161/CIRCULATIONAHA.106.677070.CrossRefPubMedGoogle Scholar
  38. 38.
    Pannu N, Graham M, Klarenbach S, Meyer S, Kieser T, Hemmelgarn B, et al. A new model to predict acute kidney injury requiring renal replacement therapy after cardiac surgery. CMAJ. 2016;188(15):1076–83.CrossRefGoogle Scholar
  39. 39.
    Palomba H, de Castro I, Neto AL, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS score. Kidney Int. 2007;72(5):624–31.CrossRefGoogle Scholar
  40. 40.
    Jorge-Monjas P, Bustamante-Munguira J, Lorenzo M, Heredia-Rodríguez M, Fierro I, Gómez-Sánchez E, et al. Predicting cardiac surgery-associated acute kidney injury: the CRATE score. J Crit Care. 2016;31(1):130–8.  https://doi.org/10.1016/j.jcrc.2015.11.004.CrossRefPubMedGoogle Scholar
  41. 41.
    Vanmassenhove J, Kielstein J, Jörres A, Biesen WV. Management of patients at risk of acute kidney injury. Lancet. 2017;389(10084):2139–51.  https://doi.org/10.1016/S0140-6736(17)31329-6.CrossRefPubMedGoogle Scholar
  42. 42.
    Kristovic D, Horvatic I, Husedzinovic I, Sutlic Z, Rudez I, Baric D, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interact Cardiovasc Thorac Surg. 2015;21(3):366–73.  https://doi.org/10.1093/icvts/ivv162.CrossRefPubMedGoogle Scholar
  43. 43.
    Wong GT, Lee EY, Irwin MG. Contrast induced nephropathy in vascular surgery. Br J Anaesth. 2016;117(Suppl 2):ii63–73.  https://doi.org/10.1093/bja/aew213.CrossRefPubMedGoogle Scholar
  44. 44.
    Lameire N, Adam A, Becker CR, Davidson C, McCullough PA, Stacul F, et al. Baseline renal function screening. Am J Cardiol. 2006;98(6A):21K–6K.  https://doi.org/10.1016/j.amjcard.2006.01.021.CrossRefPubMedGoogle Scholar
  45. 45.
    Brown JR, McCullough PA, Splaine ME, Davies L, Ross CS, Dauerman HL, et al. How do centres begin the process to prevent contrast-induced acute kidney injury: a report from a new regional collaborative. BMJ Qual Saf. 2012;21(1):54–62.  https://doi.org/10.1136/bmjqs-2011-000041.CrossRefPubMedGoogle Scholar
  46. 46.
    Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.PubMedGoogle Scholar
  47. 47.
    Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, et al. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017: expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med. 2017;43(6):730–49.  https://doi.org/10.1007/s00134-017-4832-y.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Landoni G, Bove T, Székely A, Comis M, Rodseth RN, Pasero D, et al. Reducing mortality in acute kidney injury patients: systematic review and international web-based survey. J Cardiothorac Vasc Anesth. 2013;27(6):1384–98.  https://doi.org/10.1053/j.jvca.2013.06.028.CrossRefPubMedGoogle Scholar
  49. 49.
    Kane-Gill SL, Goldstein SL. Drug-induced acute kidney injury: a focus on risk assessment for prevention. Crit Care Clin. 2015;31(4):675–84.  https://doi.org/10.1016/j.ccc.2015.06.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Sousa-Uva M, Head SJ, Milojevic M, Collet JP, Landoni G, Castella M, et al. 2017 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur J Cardiothorac Surg. 2018;53:5–33.  https://doi.org/10.1093/ejcts/ezx314.CrossRefPubMedGoogle Scholar
  51. 51.
    Di Tomasso N, Monaco F, Landoni G. Renal protection in cardiovascular surgery. F1000Research. 2016;5:331.  https://doi.org/10.12688/f1000research.7348.1.CrossRefGoogle Scholar
  52. 52.
    Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28(2):653–9.  https://doi.org/10.1681/ASN.2016010021.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology. 2013;119(3):507–15.  https://doi.org/10.1097/ALN.0b013e3182a10e26.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Salmasi V, Maheshwari K, Yang D, Mascha EJ, Singh A, Sessler DI, et al. Relationship between intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after noncardiac surgery: a retrospective cohort analysis. Anesthesiology. 2017;126(1):47–65.CrossRefGoogle Scholar
  55. 55.
    Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014;370(17):1583–93.  https://doi.org/10.1056/NEJMoa1312173.CrossRefPubMedGoogle Scholar
  56. 56.
    Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7.  https://doi.org/10.1038/ki.2009.159.CrossRefPubMedGoogle Scholar
  57. 57.
    Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74.  https://doi.org/10.1186/cc6916.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.  https://doi.org/10.1097/CCM.0b013e31828a25fd.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Monnet X, Cipriani F, Camous L, Sentenac P, Dres M, Krastinova E, et al. The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care. 2016;6(1):46.  https://doi.org/10.1186/s13613-016-0149-1.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369(13):1243–51.  https://doi.org/10.1056/NEJMra1208627.CrossRefPubMedGoogle Scholar
  61. 61.
    Pisano A, Landoni G, Bellomo R. The risk of infusing gelatin? Die-hard misconceptions and forgotten (or ignored) truths. Minerva Anestesiol. 2016;82(10):1107–14.PubMedGoogle Scholar
  62. 62.
    Mailloux L, Swartz CD, Capizzi R, Kim KE, Onesti G, Ramirez O, et al. Acute renal failure after administration of low-molecular weight dextran. N Engl J Med. 1967;277(21):1113–8.CrossRefGoogle Scholar
  63. 63.
    Laxenaire MC, Charpentier C, Feldman L. Anaphylactoid reactions to colloid plasma substitutes: incidence, risk factors, mechanisms. A French multicenter prospective study. Ann Fr Anesth Reanim. 1994;13(3):301–10.CrossRefGoogle Scholar
  64. 64.
    Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.  https://doi.org/10.1056/NEJMoa1204242.CrossRefPubMedGoogle Scholar
  65. 65.
    Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.  https://doi.org/10.1056/NEJMoa1209759.. Erratum. N Engl J Med. 2016;374(13):1298.CrossRefPubMedGoogle Scholar
  66. 66.
    Meybohm P, Van Aken H, De Gasperi A, De Hert S, Della Rocca G, Girbes AR, et al. Re-evaluating currently available data and suggestions for planning randomised controlled studies regarding the use of hydroxyethyl starch in critically ill patients - a multidisciplinary statement. Crit Care. 2013;17(4):R166.  https://doi.org/10.1186/cc12845.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.CrossRefGoogle Scholar
  68. 68.
    Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.  https://doi.org/10.1056/NEJMoa1305727.CrossRefPubMedGoogle Scholar
  69. 69.
    Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364(26):2483–95.  https://doi.org/10.1056/NEJMoa1101549.CrossRefGoogle Scholar
  70. 70.
    Young P, Bailey M, Beasley R, SPLIT Investigators; ANZICS CTG, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314(16):1701–10.  https://doi.org/10.1001/jama.2015.12334.CrossRefPubMedGoogle Scholar
  71. 71.
    Jones D, Bellomo R. Renal-dose dopamine: from hypothesis to paradigm to dogma to myth and, finally, superstition? J Intensive Care Med. 2005;20(4):199–211.  https://doi.org/10.1177/0885066605276963.CrossRefPubMedGoogle Scholar
  72. 72.
    Lauschke A, Teichgräber UK, Frei U, Eckardt KU. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69(9):1669–74.  https://doi.org/10.1038/sj.ki.5000310.CrossRefPubMedGoogle Scholar
  73. 73.
    Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–24.CrossRefGoogle Scholar
  74. 74.
    Karthik S, Lisbon A. Low-dose dopamine in the intensive care unit. Semin Dial. 2006;19(6):465–71.  https://doi.org/10.1111/j.1525-139X.2006.00208.x.CrossRefPubMedGoogle Scholar
  75. 75.
    De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.  https://doi.org/10.1056/NEJMoa0907118.CrossRefPubMedGoogle Scholar
  76. 76.
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–77.  https://doi.org/10.1007/s00134-017-4683-6.CrossRefPubMedGoogle Scholar
  77. 77.
    Møller MH, Claudius C, Junttila E, Haney M, Oscarsson-Tibblin A, Haavind A, et al. Scandinavian SSAI clinical practice guideline on choice of first-line vasopressor for patients with acute circulatory failure. Acta Anaesthesiol Scand. 2016;60(10):1347–66.  https://doi.org/10.1111/aas.12780.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Landoni G, Biondi-Zoccai G, Marino G, Bove T, Fochi O, Maj G, et al. Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth. 2008;22(1):27–33.  https://doi.org/10.1053/j.jvca.2007.07.015.CrossRefPubMedGoogle Scholar
  79. 79.
    Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, et al. Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth. 2012;26(3):407–13.  https://doi.org/10.1053/j.jvca.2012.01.038.CrossRefPubMedGoogle Scholar
  80. 80.
    Gillies MA, Kakar V, Parker RJ, Honoré PM, Ostermann M. Fenoldopam to prevent acute kidney injury after major surgery-a systematic review and meta-analysis. Crit Care. 2015;19:449.  https://doi.org/10.1186/s13054-015-1166-4.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Bove T, Zangrillo A, Guarracino F, Alvaro G, Persi B, Maglioni E, et al. Effect of fenoldopam on use of renal replacement therapy among patients with acute kidney injury after cardiac surgery: a randomized clinical trial. JAMA. 2014;312(21):2244–53.  https://doi.org/10.1001/jama.2014.13573.CrossRefPubMedGoogle Scholar
  82. 82.
    Papp Z, Édes I, Fruhwald S, De Hert SG, Salmenperä M, Leppikangas H, et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol. 2012;159(2):82–7.  https://doi.org/10.1016/j.ijcard.2011.07.022.CrossRefPubMedGoogle Scholar
  83. 83.
    Farmakis D, Alvarez J, Gal TB, Brito D, Fedele F, Fonseca C, et al. Levosimendan beyond inotropy and acute heart failure: evidence of pleiotropic effects on the heart and other organs: an expert panel position paper. Int J Cardiol. 2016;222:303–12.  https://doi.org/10.1016/j.ijcard.2016.07.202.CrossRefPubMedGoogle Scholar
  84. 84.
    Yilmaz MB, Grossini E, Silva Cardoso JC, Édes I, Fedele F, Pollesello P, et al. Renal effects of levosimendan: a consensus report. Cardiovasc Drugs Ther. 2013;27(6):581–90.  https://doi.org/10.1007/s10557-013-6485-6.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bove T, Matteazzi A, Belletti A, Paternoster G, Saleh O, Taddeo D, et al. Beneficial impact of levosimendan in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Heart Lung Vessel. 2015;7(1):35–46.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Zhou C, Gong J, Chen D, Wang W, Liu M, Liu B. Levosimendan for prevention of acute kidney injury after cardiac surgery: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2016;67(3):408–16.  https://doi.org/10.1053/j.ajkd.2015.09.015.CrossRefPubMedGoogle Scholar
  87. 87.
    Mehta RH, Leimberger JD, van Diepen S, Meza J, Wang A, Jankowich R, Harrison RW, Hay D, Fremes S, Duncan A, Soltesz EG, Luber J, Park S, Argenziano M, Murphy E, Marcel R, Kalavrouziotis D, Nagpal D, Bozinovski J, Toller W, Heringlake M, Goodman SG, Levy JH, Harrington RA, Anstrom KJ, Alexander JH, LEVO-CTS Investigators. Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med. 2017;376:2032–42.  https://doi.org/10.1056/NEJMoa1616218.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Cholley B, Caruba T, Grosjean S, Amour J, Ouattara A, Villacorta J, et al. Effect of Levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: the LICORN randomized clinical trial. JAMA. 2017;318(6):548–56.  https://doi.org/10.1001/jama.2017.9973.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Landoni G, Lomivorotov VV, Alvaro G, Lobreglio R, Pisano A, Guarracino F, et al. Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med. 2017;376(21):2021–31.  https://doi.org/10.1056/NEJMoa1616325.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Russell JA. Bench-to-bedside review: Vasopressin in the management of septic shock. Crit Care. 2011;15(4):226.  https://doi.org/10.1186/cc8224.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Bragadottir G, Redfors B, Nygren A, Sellgren J, Ricksten SE. Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol Scand. 2009;53(8):1052–9.  https://doi.org/10.1111/j.1399-6576.2009.02037.x.CrossRefPubMedGoogle Scholar
  92. 92.
    Russell JA, Walley KR, Singer J, Gordon AC, Hébert PC, Cooper DJ. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008;358(9):877–87.  https://doi.org/10.1056/NEJMoa067373.CrossRefPubMedGoogle Scholar
  93. 93.
    Gordon AC, Russell JA, Walley KR, Singer J, Ayers D, Storms MM, et al. The effects of vasopressin on acute kidney injury in septic shock. Intensive Care Med. 2010;36(1):83–91.  https://doi.org/10.1007/s00134-009-1687-x.CrossRefPubMedGoogle Scholar
  94. 94.
    Gordon AC, Mason AJ, Thirunavukkarasu N, Perkins GD, Cecconi M, Cepkova M, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA. 2016;316(5):509–18.  https://doi.org/10.1001/jama.2016.10485.CrossRefPubMedGoogle Scholar
  95. 95.
    Hajjar LA, Vincent JL, Barbosa Gomes Galas FR, Rhodes A, Landoni G, Osawa EA, et al. Vasopressin versus norepinephrine in patients with vasoplegic shock after cardiac surgery: the VANCS randomized controlled trial. Anesthesiology. 2017;126(1):85–93.  https://doi.org/10.1097/ALN.0000000000001434.CrossRefGoogle Scholar
  96. 96.
    Bagshaw SM, Delaney A, Jones D, Ronco C, Bellomo R. Diuretics in the management of acute kidney injury: a multinational survey. Contrib Nephrol. 2007;156:236–49.  https://doi.org/10.1159/000102089.CrossRefPubMedGoogle Scholar
  97. 97.
    Ho KM, Power BM. Benefits and risks of furosemide in acute kidney injury. Anaesthesia. 2010;65(3):283–93.  https://doi.org/10.1111/j.1365-2044.2009.06228.x.CrossRefPubMedGoogle Scholar
  98. 98.
    Bagshaw SM, Delaney A, Haase M, Ghali WA, Bellomo R. Loop diuretics in the management of acute renal failure: a systematic review and meta-analysis. Crit Care Resusc. 2007;9(1):60–8.PubMedGoogle Scholar
  99. 99.
    Sampath S, Moran JL, Graham PL, Rockliff S, Bersten AD, Abrams KR. The efficacy of loop diuretics in acute renal failure: assessment using Bayesian evidence synthesis techniques. Crit Care Med. 2007;35(11):2516–24.CrossRefGoogle Scholar
  100. 100.
    Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, Tumlin JA, Trevino SA, Bennett MR, Kimmel PL, Seneff MG, Chawla LS. Furosemide stress test and biomarkers for the prediction of AKI severity. J Am Soc Nephrol. 2015;26:2023–31.  https://doi.org/10.1681/ASN.2014060535.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Dieleman JM, Nierich AP, Rosseel PM, van der Maaten JM, Hofland J, Diephuis JC, et al. Intraoperative high-dose dexamethasone for cardiac surgery: a randomized controlled trial. JAMA. 2012;308(17):1761–7.  https://doi.org/10.1001/jama.2012.14144.CrossRefPubMedGoogle Scholar
  102. 102.
    Whitlock RP, Devereaux PJ, Teoh KH, Lamy A, Vincent J, Pogue J, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(10000):1243–53.  https://doi.org/10.1016/S0140-6736(15)00273-1.CrossRefPubMedGoogle Scholar
  103. 103.
    Jacob KA, Leaf D, Dieleman J, van Dijk D, Nierich AP, Rosseel PM, et al. Intraoperative high-dose dexamethasone and severe AKI after cardiac surgery. J Am Soc Nephrol. 2015;26(12):2947–51.  https://doi.org/10.1681/ASN.2014080840.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Dieleman JM, van Dijk D. Corticosteroids for cardiac surgery: a summary of two large randomised trials. Neth J Crit Care. 2016;24:6–10.Google Scholar
  105. 105.
    Kavalipati N, Shah J, Ramakrishan A, Vasnawala H. Pleiotropic effects of statins. Indian J Endocrinol Metab. 2015;19:554–62.  https://doi.org/10.4103/2230-8210.163106.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Galyfos G, Sianou A, Filis K. Pleiotropic effects of statins in the perioperative setting. Ann Card Anaesth. 2017;20(Supplement):S43–8.  https://doi.org/10.4103/0971-9784.197796.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Billings FT 4th, Hendricks PA, Schildcrout JS, Shi Y, Petracek MR, Byrne JG, Brown NJ. High-dose perioperative atorvastatin and acute kidney injury following cardiac surgery: a randomized clinical trial. JAMA. 2016;315:877–88.  https://doi.org/10.1001/jama.2016.0548.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Park JH, Shim JK, Song JW, Soh S, Kwak YL. Effect of atorvastatin on the incidence of acute kidney injury following valvular heart surgery: a randomized, placebo-controlled trial. Intensive Care Med. 2016;42(9):1398–407.  https://doi.org/10.1007/s00134-016-4358-8.CrossRefPubMedGoogle Scholar
  109. 109.
    Zheng Z, Jayaram R, Jiang L, Emberson J, Zhao Y, Li Q, et al. Perioperative rosuvastatin in cardiac surgery. N Engl J Med. 2016;374(18):1744–53.  https://doi.org/10.1056/NEJMoa1507750.CrossRefPubMedGoogle Scholar
  110. 110.
    Putzu A, Capelli B, Belletti A, Cassina T, Ferrari E, Gallo M, et al. Perioperative statin therapy in cardiac surgery: a meta-analysis of randomized controlled trials. Crit Care. 2016;20(1):395.  https://doi.org/10.1186/s13054-016-1560-6.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Sanders RD, Nicholson A, Lewis SR, Smith AF, Alderson P. Perioperative statin therapy for improving outcomes during and after noncardiac vascular surgery. Cochrane Database Syst Rev. 2013;7:CD009971.  https://doi.org/10.1002/14651858.CD009971.pub2.CrossRefGoogle Scholar
  112. 112.
    Berwanger O, de Barros E, Silva PG, Barbosa RR, Precoma DB, Figueiredo EL, Hajjar LA, et al. Atorvastatin for high-risk statin-naïve patients undergoing noncardiac surgery: the lowering the risk of operative complications using atorvastatin loading dose (LOAD) randomized trial. Am Heart J. 2017;184:88–96.  https://doi.org/10.1016/j.ahj.2016.11.001.CrossRefPubMedGoogle Scholar
  113. 113.
    Pineda A, Cubeddu LX. Statin rebound or withdrawal syndrome: does it exist? Curr Atheroscler Rep. 2011;13(1):23–30.  https://doi.org/10.1007/s11883-010-0148-x.CrossRefPubMedGoogle Scholar
  114. 114.
    Le Manach Y, Godet G, Coriat P, Martinon C, Bertrand M, Fléron MH, et al. The impact of postoperative discontinuation or continuation of chronic statin therapy on cardiac outcome after major vascular surgery. Anesth Analg. 2007;104(6):1326–33.. table of contents.CrossRefGoogle Scholar
  115. 115.
    Swärd K, Valsson F, Sellgren J, Ricksten SE. Differential effects of human atrial natriuretic peptide and furosemide on glomerular filtration rate and renal oxygen consumption in humans. Intensive Care Med. 2005;31(1):79–85.CrossRefGoogle Scholar
  116. 116.
    Houben AJ, van der Zander K, de Leeuw PW. Vascular and renal actions of brain natriuretic peptide in man: physiology and pharmacology. Fundam Clin Pharmacol. 2005;19(4):411–9.  https://doi.org/10.1111/j.1472-8206.2005.00336.x.CrossRefPubMedGoogle Scholar
  117. 117.
    Kuhn M. Endothelial actions of atrial and B-type natriuretic peptides. Br J Pharmacol. 2012;166(2):522–31.  https://doi.org/10.1111/j.1476-5381.2012.01827.x.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. Atrial natriuretic peptide for preventing and treating acute kidney injury. Cochrane Database Syst Rev. 2009;4:CD006028.  https://doi.org/10.1002/14651858.CrossRefGoogle Scholar
  119. 119.
    Mitaka C, Kudo T, Haraguchi G, Tomita M. Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. Crit Care. 2011;15(5):R258.  https://doi.org/10.1186/cc10519.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Xiong B, Wang C, Yao Y, Huang Y, Tan J, Cao Y, et al. The dose-dependent effect of nesiritide on renal function in patients with acute decompensated heart failure: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2015;10(6):e0131326.  https://doi.org/10.1371/journal.pone.0131326.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Mori Y, Kamada T, Ochiai R. Reduction in the incidence of acute kidney injury after aortic arch surgery with low-dose atrial natriuretic peptide: a randomised controlled trial. Eur J Anaesthesiol. 2014;31(7):381–7.  https://doi.org/10.1097/EJA.0000000000000035.CrossRefPubMedGoogle Scholar
  122. 122.
    Sezai A, Nakata K, Iida M, Yoshitake I, Wakui S, Hata H, et al. Early results of human atrial natriuretic peptide infusion in non-dialysis patients with chronic kidney disease undergoing isolated coronary artery bypass grafting: the NU-HIT trial for CKD-II. Ann Thorac Cardiovasc Surg. 2014;20(3):217–22.CrossRefGoogle Scholar
  123. 123.
    Sisillo E, Ceriani R, Bortone F, Juliano G, Salvi L, Veglia F, et al. N-acetylcysteine for prevention of acute renal failure in patients with chronic renal insufficiency undergoing cardiac surgery: a prospective, randomized, clinical trial. Crit Care Med. 2008;36(1):81–6.  https://doi.org/10.1097/01.CCM.0000295305.22281.1D.CrossRefPubMedGoogle Scholar
  124. 124.
    Wijeysundera DN, Beattie WS, Rao V, Granton JT, Chan CT. N-acetylcysteine for preventing acute kidney injury in cardiac surgery patients with pre-existing moderate renal insufficiency. Can J Anaesth. 2007;54(11):872–81.  https://doi.org/10.1007/BF03026790.CrossRefPubMedGoogle Scholar
  125. 125.
    Macedo E, Abdulkader R, Castro I, Sobrinho AC, Yu L, Vieira JM Jr. Lack of protection of N-acetylcysteine (NAC) in acute renal failure related to elective aortic aneurysm repair-a randomized controlled trial. Nephrol Dial Transplant. 2006;21(7):1863–9.  https://doi.org/10.1093/ndt/gfl079.CrossRefPubMedGoogle Scholar
  126. 126.
    Adabag AS, Ishani A, Koneswaran S, Johnson DJ, Kelly RF, Ward HB, et al. Utility of N-acetylcysteine to prevent acute kidney injury after cardiac surgery: a randomized controlled trial. Am Heart J. 2008;155(6):1143–9.  https://doi.org/10.1016/j.ahj.2008.01.013.CrossRefPubMedGoogle Scholar
  127. 127.
    Song JW, Shim JK, Soh S, Jang J, Kwak YL. Double-blinded, randomized controlled trial of N-acetylcysteine for prevention of acute kidney injury in high risk patients undergoing off-pump coronary artery bypass. Nephrology. 2015;20(2):96–102.  https://doi.org/10.1111/nep.12361.CrossRefPubMedGoogle Scholar
  128. 128.
    Fraga CM, Tomasi CD, Damasio DC, Vuolo F, Ritter C, Dal-Pizzol F. N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial. Crit Care. 2016;20(1):331.  https://doi.org/10.1186/s13054-016-1504-1.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Lynch RM, Robertson R. Anaphylactoid reactions to intravenous N-acetylcysteine: a prospective case controlled study. Accid Emerg Nurs. 2004;12(1):10–5.CrossRefGoogle Scholar
  130. 130.
    Sandilands EA, Bateman DN. Adverse reactions associated with acetylcysteine. Clin Toxicol. 2009;47(2):81–8.  https://doi.org/10.1080/15563650802665587.CrossRefGoogle Scholar
  131. 131.
    Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86(6 Pt 1):649–52.CrossRefGoogle Scholar
  132. 132.
    Nyman U, Björk J, Aspelin P, Marenzi G. Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol. 2008;49(6):658–67.  https://doi.org/10.1080/02841850802050762.CrossRefPubMedGoogle Scholar
  133. 133.
    Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8.  https://doi.org/10.1148/radiology.188.1.8511292.CrossRefPubMedGoogle Scholar
  134. 134.
    Lameire N, Kellum JA, KDIGO AKI Guideline Work Group. Contrast-induced acute kidney injury and renal support for acute kidney injury: a KDIGO summary (part 2). Crit Care. 2013;17(1):205.  https://doi.org/10.1186/cc11455.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Nijssen EC, Rennenberg RJ, Nelemans PJ, Essers BA, Janssen MM, Vermeeren MA, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389(10076):1312–22.  https://doi.org/10.1016/S0140-6736(17)30057-0.CrossRefPubMedGoogle Scholar
  136. 136.
    Weisbord SD, Gallagher M, Jneid H, Garcia S, Cass A, Thwin SS, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378:603–14.  https://doi.org/10.1056/NEJMoa1710933.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Putzu A, Boscolo Berto M, Belletti A, Pasotti E, Cassina T, Moccetti T, et al. Prevention of contrast-induced acute kidney injury by furosemide with matched hydration in patients undergoing interventional procedures: a systematic review and meta-analysis of randomized trials. JACC Cardiovasc Interv. 2017;10(4):355–63.  https://doi.org/10.1016/j.jcin.2016.11.006.CrossRefPubMedGoogle Scholar
  138. 138.
    Subramaniam RM, Suarez-Cuervo C, Wilson RF, Turban S, Zhang A, Sherrod C, et al. Effectiveness of prevention strategies for contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164(6):406–16.  https://doi.org/10.7326/M15-1456.CrossRefPubMedGoogle Scholar
  139. 139.
    Anderson SM, Park ZH, Patel RV. Intravenous N-acetylcysteine in the prevention of contrast media-induced nephropathy. Ann Pharmacother. 2011;45(1):101–7.  https://doi.org/10.1345/aph.1P275.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alessandro Belletti
    • 1
  • Margherita Licheri
    • 2
  • Tiziana Bove
    • 3
    Email author
  1. 1.Department of Anesthesia and Intensive CareIRCCS San Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Medical Sciences and Public Health “M. Aresu”University of CagliariCagliariItaly
  3. 3.Department of MedicineUniversity of UdineUdineItaly

Personalised recommendations