Advertisement

Utilization of Wild Species for Wheat Improvement Using Genomic Approaches

  • Satinder Kaur
  • Suruchi Jindal
  • Maninder Kaur
  • Parveen Chhuneja
Chapter

Abstract

Wheat is one of the most important food crops in the world in terms of the area, production, and nutrition. It can grow in varied tropical and temperate climates ranging from a few meters to more than 3800 m above sea level. In spite of a wide range of climatic adaptability, a number of biotic and abiotic stresses limit its yield stability. Wild wheat relatively belonging to primary, secondary, and tertiary gene pool contains untapped variation for wheat improvement, both for biotic and abiotic stresses that could be incorporated in cultivated wheat. Diversity of primary gene pool can be incorporated by simple hybridization methods, while diversity of secondary gene pool of Triticum and Aegilops species, sharing one genome common with wheat, can be transferred with slight manipulations in hybridization. Species belonging to the tertiary gene pool are more distantly related to wheat. To transfer variation from these species to common wheat, special cytogenetic manipulations are required. Availability of various genomic resources of wild species of wheat is making an easy way to reach the genes which become possible because of recent developments in sequencing technologies. These platforms enabled the sequencing of progenitor species of wheat like T. urartu, Aegilops tauschii, wild emmer wheat, and Triticum monococcum as well as transcriptome sequencing of non-progenitor species like Aegilops sharonensis and Agropyron cristatum. Sequence data thus obtained from wild species of wheat hold the potential for the improvement of wheat crop. The genic sequences or expressed sequence tags (ESTs) obtained from the wild species are used to design SNP chips of data capacity 35 K and 820 K which are being used to map and fine map agronomically important genes. Also the technique of flow cytometry enabled the flow sorting of larger genomes which allows the focus only on specific chromosomes containing genes of interest. Besides latest innovation in RenSeq and MutRenSeq allowed the mapping and cloning of disease resistance genes more fast and reliable.

Keywords

Wheat Wild germplasm Progenitor Non-progenitor Aegilops Genome Transcriptome Resistant gene Biotic stress Abiotic stress 

References

  1. Albrechtsen A, Nielsen FC, Nielsen R (2010) Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol 27:2534–2547CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allen AM, Barker GL, Wilkinson P et al (2013) Discovery and development of exome based, codominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J 11:279–295CrossRefPubMedGoogle Scholar
  3. Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley AR, Alda M, Jack P, Phillips AL, Edwards KJ (2017) Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J 15(3):390–401Google Scholar
  4. Anh VL, Anh NT, Tagle AG, Vy TTP, Inoue Y, Takumi S, Chuma I, Tosa Y (2015) Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568–1572CrossRefPubMedGoogle Scholar
  5. Anugrahwati DR, Shepherd KW, Verlin DC, Zhang P, Mirzaghaderi G, Walker E, Francki MG, Dundas IS (2008) Isolation of wheat rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome 51:341–349CrossRefPubMedGoogle Scholar
  6. Ayadi M, Cavez D, Miled N, Chaumont F, Masmoudi K (2011) Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol Biochem 49(9):1029–1039.  https://doi.org/10.1016/j.plaphy.2011.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42:135–161CrossRefPubMedGoogle Scholar
  8. Ban T, Watanabe N (2001) The effects of chromosomes 3A and 3B on resistance to fusarium head blight in tetraploid wheat. Hereditas 135:5–99Google Scholar
  9. Bansal M, Kaur S, Dhaliwal HS, Bains NS, Bariana HS, Chhuneja P, Bansal UK (2016) Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol 66:38–44.  https://doi.org/10.1111/ppa.12549 CrossRefGoogle Scholar
  10. Beissinger TM, Hirsch CN, al SRS (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193(4):1073–1081.  https://doi.org/10.1534/genetics.112.147710 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 116:417–425CrossRefGoogle Scholar
  12. Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms - getting genomics going. Curr Opin Plant Biol 9:180–188CrossRefPubMedGoogle Scholar
  13. Bouyioukos C, Moscou MJ, Champouret N et al (2013) Characterisation and analysis of the Aegilops sharonensis transcriptome, a wild relative of wheat in the sitopsis section. PLoS one 8(8):e72782.  https://doi.org/10.1371/journal.pone.0072782 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789CrossRefPubMedGoogle Scholar
  15. Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26.  https://doi.org/10.1111/j.1439-0523.2008.01550.x CrossRefGoogle Scholar
  16. Buerstmayr M, Huber K, Heckmann J, Steiner B, Nelson J, Buerstmayr H (2012) Mapping of QTL for fusarium head blight resistance and morphological and developmental traits in three backcross populations derived from Triticum dicoccum × Triticum durum. Theor Appl Genet 125:1751–1765.  https://doi.org/10.1007/s00122-012-1951-2 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cainong JC, Bockus WW, Feng YG, Chen PD, Qi LL, Sehgal SK, Danilova TV, Koo D-H, Friebe B, Gill BS (2015) Chromosome engineering, mapping, and transferring of resistance to fusarium head blight disease from Elymus tsukushiensis into wheat. Theor Appl Genet 128:1019–1027CrossRefPubMedGoogle Scholar
  18. Cavanagh CR, Chao S, Wang S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062CrossRefPubMedGoogle Scholar
  19. Cenci A, D’Ovidio R, Tanzarella OA, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454CrossRefGoogle Scholar
  20. Chantret N, Cencia A, Sabot F et al (2004) Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice. Mol Gene Genomics 271:377–386CrossRefGoogle Scholar
  21. Chapman JA, Mascher M, Buluç A et al (2015) A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol 16(1):26.  https://doi.org/10.1186/s13059-015-0582-8 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chen X (2005) Epidemiology and control of stripe rust on wheat. Can J Plant Pathol 27:314–337CrossRefGoogle Scholar
  23. Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He ZH, Jia JZ (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228CrossRefGoogle Scholar
  24. Chen S, Rouse MN, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J (2015) Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet 128(4):645–656CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cheng X, Yonghong R, Yinqiao J, Zifeng G, Yan Z, Chuanxiao X, Junjie F, Hongwu W, Guoying W, Yunbi X, Ping L and Cheng Z (2017) Development of a maize 55K SNP array with improved genome coverage for molecular breeding. Mol Breed 37(3):20Google Scholar
  26. Cherukuri DP, Gupta PK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR (2005) Molecular mapping of Aegilops speltoides derived leaf rust resistance gene Lr28 in wheat. Euphytica 143:19–26CrossRefGoogle Scholar
  27. Chhuneja P, Kaur S, Dhaliwal HS (2008) Evaluation of Aegilops tauschii (L.) germplasm for karnal bunt resistance in a screen house with simulated environmental conditions. Plant Genet Resour C 6(2):79–84CrossRefGoogle Scholar
  28. Chu Y, Corey DR (2012) RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther 22(4):271–274.  https://doi.org/10.1089/nat.2012.0367 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Cossani CM, Reynolds MP (2012) Physiological traits for improving heat tolerance in wheat. Plant Physiol 160:1710–1718CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cruz MFA, Prestes AM, Maciel JL, Scheeren PL (2010) Partial resistance to blast on common and synthetic wheat genotypes in seedling and in adult plant growth stages. Trop Plant Pathol 35:24–31CrossRefGoogle Scholar
  31. Cruz CD, Bockus WW, Stack JP, Tang X, Valent B, Pedley KF, Peterson GL (2012) Preliminary assessment of resistance among U.S. wheat cultivars to the Triticum pathotype of Magnaporthe oryzae. Plant Dis 96:1501–1505CrossRefGoogle Scholar
  32. Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, Akhunov E, Chumley F, Baldelomar FD, Valent B (2016) The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum Pathotype of Magnaporthe oryzae. Crop Sci 56:990–1000CrossRefPubMedPubMedCentralGoogle Scholar
  33. Cumagun CJ, Anh VL, Vy TT, Asano H, Hyon GS, Inoue Y, Chuma I, Tosa Y (2014) Identification of a hidden resistance gene in tetraploid wheat using laboratory strains of Pyricularia oryzae produced by backcrossing. Phytopathology 104:634–640.  https://doi.org/10.1094/PHYTO-04-13-0106-R CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2010) Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet 122(3):479–487CrossRefPubMedGoogle Scholar
  35. Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2011) Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet 122(3):479–487CrossRefPubMedGoogle Scholar
  36. Dedryver F, Jubier MF, Thouvenin J, Goyeau H (1996) Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome 39:830–835CrossRefPubMedGoogle Scholar
  37. Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridisation with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum Press, New York, pp 209–279CrossRefGoogle Scholar
  38. Dexter J, Clear R, Preston K (1996) Fusarium head blight: effect on the milling and baking of some Canadian wheats. Cereal Chem 73:695–701Google Scholar
  39. Dhaliwal HS, Singh H, Singh KS, Randhawa HS (1993) Evaluation and cataloguing of wheat germplasm for disease resistance and quality. In: Damania AB (ed) Biodiversity and wheat improvement. Wiley, London, pp 123–140.  https://doi.org/10.1023/A:1014910000128 CrossRefGoogle Scholar
  40. Dhaliwal HS, Singh H (1997) Breeding for resistance to bunts and smuts: Indian scenario. In: Proceedings Bunts and Smuts of Wheat: An International Symposium. North Carolina, North American Plant Protection Organization, Ottawa, pp 327–347Google Scholar
  41. Doležel J, Vrána J, Cápal P et al (2014) Advances in plant chromosome genomics. Biotechnol Adv 32(1):122–136.  https://doi.org/10.1016/j.biotechadv.2013.12.011 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Dubcovsky J, Luo MC, Dvorak J (1995) Differentiation between homoeologous chromosomes 1A of wheat and lAm of Triticum monococcum and its recognition by the wheat Ph1 locus. Proc Natl Acad Sci USA 92:6645–6649CrossRefPubMedGoogle Scholar
  43. Dvorak J, Akhunov ED (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 171:323–332CrossRefPubMedPubMedCentralGoogle Scholar
  44. Dvořák J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–667CrossRefGoogle Scholar
  45. Dyck PL, Sykes EE (1994) Genetics of leaf-rust resistance in three spelt wheats. Can J Plant Sci 74:231–233CrossRefGoogle Scholar
  46. Edae EA, Olivera PD, Jin Y et al (2017) Genotyping-by-sequencing facilitates a high-density consensus linkage map for Aegilops umbellulata, a wild relative of cultivated wheat. G3: Genes, Genomes, Genetics 7(5):1551–1561.  https://doi.org/10.1534/g3.117.039966 CrossRefGoogle Scholar
  47. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS one 6:e19379.  https://doi.org/10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Faris JD, Xu SS, Cai X, Friesen TL, Jin Y (2008) Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res 16:1097–1105CrossRefPubMedGoogle Scholar
  49. Farooq M, Bramley H, Palt JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain-filling phases. Crit Rev Plant Sci 30:1–17CrossRefGoogle Scholar
  50. Fischer RA (1985) Number of kernels in wheat crops and the influence of solar radiation and temperature. J Agric Sci (Camb) 105(2):447–461CrossRefGoogle Scholar
  51. Fox SE, Geniza M, Hanumappa M et al (2014) De novo transcriptome assembly and analyses of gene expression during photomorphogenesis in diploid wheat Triticum monococcum. PLoS One 9(8):e105275.  https://doi.org/10.1371/journal.pone.0105275 CrossRefGoogle Scholar
  52. Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625CrossRefGoogle Scholar
  53. Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87.  https://doi.org/10.1007/BF00035277 CrossRefGoogle Scholar
  54. Geng X, Zhang Y, Zang X, Zhao Y, Zhang J, You M, Zhongfu NI, Yao Y, Xin M, Peng H (2016) Evaluation the thermotolerance of the wheat (Triticum aestivum L.) cultivars and advanced lines collected from the northern China and north area of Huang-Huai winter wheat regions. J Triticeae Crops 36:172–181Google Scholar
  55. Gold J, Harder D, Townsley-Smith F et al (1999) Development of a molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electron J Biotechnol 2:1–6Google Scholar
  56. Gold J, Harder D, Townley-smith F, Aung T, Procunier JD (2002) Development of molecular marker for rust resistance genes Sr39 and Lr35 in wheat breeding lines. Electronic J Biotechnol 2:35–40Google Scholar
  57. Gorham J (1990) Salt tolerance in the Triticeae: K/Na discrimination in synthetic hexaploid wheats. J Exp Bot 4:623–627CrossRefGoogle Scholar
  58. Gorham J, Bristol A, Young EM, Wyn Jones RG (1991) The presence of the enhanced K/Na discrimination trait in diploid Triticum species. Theor Appl Genet 82:729–736CrossRefPubMedGoogle Scholar
  59. Gororo NN, Eagles HA, Eastwood RF, Nicolas ME, Flood RG (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241254CrossRefGoogle Scholar
  60. Goulart ACP, Sousa PG, Urashima AS (2007) Damages in wheat caused by infection of Pyricularia grisea. Summa Phytopathol 33:358–363CrossRefGoogle Scholar
  61. Gulbitti-Onarici SELMA, Sumer S, Ozcan S (2007) Determination of phylogenetic relationships between some wild wheat species using amplified fragment length polymorphism (AFLP) markers. Bot J Linn Soc 153:67–72CrossRefGoogle Scholar
  62. Gulbitti-Onarici SELMA, Sancak C, Sumer S, Ozcan S (2009) Phylogenetic relationships of some wild wheat species based on the internal transcribed spacer sequences of nrDNA. Curr Sci 96:794–800Google Scholar
  63. Gunnaiah R, Kushalappa AC, Duggavathi R et al (2012) Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 7:e40695.  https://doi.org/10.1371/journal.pone.0040695 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113:1027–1036CrossRefPubMedGoogle Scholar
  65. Gupta S, Kaur S, Sehgal S, Sharma A, Chhuneja P, Bains NS (2010) Genotypic variation for cellular thermotolerance in Aegilops tauschii Coss., the D genome progenitor of wheat. Euphytica 175(3):373–381CrossRefGoogle Scholar
  66. Harlan JR, Zohary D (1966) Distribution of wild Wheats and Barley. Science 153:1074–1080CrossRefPubMedGoogle Scholar
  67. Hartl L, Weiss H, Stephan U, Zeller FJ, Jahoor A (1995) Molecular identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). Theor Appl Genet 90:601–606CrossRefPubMedGoogle Scholar
  68. Hays D, Mason E, Hwa Do J, Menz M, Reynolds M (2007) Expression quantitative trait loci mapping heat tolerance during reproductive development in wheat (T. aestivum). In: Buck HT, Nisi JE, Salomo’n N (eds) Wheat production in stressed environments. Springer, Amsterdam, pp 373–382CrossRefGoogle Scholar
  69. He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180CrossRefPubMedGoogle Scholar
  70. He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T et al (2016) QTL Characterization of Fusarium Head Blight Resistance in CIMMYT Bread Wheat Line Soru#1. PLoS ONE 11(6):e0158052.  https://doi.org/10.1371/journal.pone.0158052 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Helguera M, Khan IA, Kolmer J, Lijavetzki D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43(5):1839–1847CrossRefGoogle Scholar
  72. Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45(2):728–734CrossRefGoogle Scholar
  73. Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008) Molecular mapping of a leaf rust resistance gene on the short arm of chromosome 6B of Durum wheat. Plant Dis 92(12):1650–1654.  https://doi.org/10.1094/PDIS-92-12-1650 CrossRefGoogle Scholar
  74. Heun M, Friebe B, Bushuk W (1990) Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology 80:1129–1133CrossRefGoogle Scholar
  75. Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M et al (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314CrossRefGoogle Scholar
  76. Heyns I, Pretorius Z, Marais F (2011) Derivation and characterization of recombinants of the Lr54/Yr37 translocation in common wheat. The Open Plant Sci J 5:1–8.  https://doi.org/10.2174/1874294701105010001 CrossRefGoogle Scholar
  77. Hiebert CW, Thomas JB, Somers DJ et al (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884.  https://doi.org/10.1007/s00122-007-0604-3 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134CrossRefGoogle Scholar
  79. Hsam SLK, Lapochkina IF, Zeller FJ (2003) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 8. Gene Pm32 in a wheat Aegilops speltoides translocation line. Euphytica 133:367–370CrossRefGoogle Scholar
  80. Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of Pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230CrossRefPubMedGoogle Scholar
  81. Huang L, Gill BS (2001) An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat. Theor Appl Genet 103:1007–1013CrossRefGoogle Scholar
  82. Huang S, Sirikhachornkit A, Su XJ et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138CrossRefPubMedGoogle Scholar
  83. Hussien T, Bowden RL, Gill BS, Cox TS, Marshall DS (1997) Performance of four new leaf rust resistance genes transferred to common wheat from Aegilops tauschii and Triticum monococcum. Plant Dis 81:582–586CrossRefGoogle Scholar
  84. Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, Hossain MS, Gupta DR, Rahman MM, Mahboob MG, Cook N, Salam MU, Surovy MZ, Sancho VB, Maciel JLN, Nhani A, Castroagudin VL, Reges JTD, Ceresini PC, Ravel S, Kellner R, Fournier E, Tharreau D, Lebrun MH, Mcdonald BA, Stitt T, Swan D, Talbot NJ, Saunders DGO, Win J, Kamoun S (2016) Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol 14:11CrossRefGoogle Scholar
  85. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547CrossRefPubMedPubMedCentralGoogle Scholar
  86. Jarve K, Peusha HO, Tsymbalova J, Tamm S, Devos KM, Enno TM (2000) Chromosomal location of a Triticum timopheevii – derived powdery mildew resistance gene transferred to common wheat. Genome 43:377–381CrossRefPubMedGoogle Scholar
  87. Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565CrossRefPubMedGoogle Scholar
  88. Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeoticum and T. urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094CrossRefGoogle Scholar
  89. Jørgensen JH (1973) Gene Pm6 for resistance to powdery mildew in wheat. Euphytica 22:43Google Scholar
  90. Joshi LM, Srivastava KD, Ramanujam K (1975) An analysis of brown rust epidemics of 1971- 72 and 1972-73. Indian Phytopathol (Astr.) 28:138Google Scholar
  91. Jupe F, Witek K, Verweij W et al (2013) Resistance gene enrichment sequencing (Ren Seq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. Plant J 76(3):530–544.  https://doi.org/10.1111/tpj.12307 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Juroszek P, von Tiedemann A (2015) Linking plant disease models to climate change scenarios to project future risks of crop diseases: a review. J Plant Dis Protection 122:3–15CrossRefGoogle Scholar
  93. Kertho A, Mamidi S, Bonman JM et al (2015) Genome-Wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS One 10(6):e0129580.  https://doi.org/10.1371/journal.pone.0129580 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare (in Japanese). Agric Hort 19:13–14Google Scholar
  95. Kilian B, Mammen K, Millet E, Sharma R, Graner A, Salamini F, Hammer K, Ozkan H (2011) Aegilops. In: Wild Crop Relatives: Genomic And Breeding Resources. Springer, Cereals, pp 1–76Google Scholar
  96. Kolb FL, Bai G-H, Muehlbauer GJ, Anderson JA, Smith KP, Fedak G (2001) Host and plant resistance genes for fusarium head blight mapping and manipulation with molecular markers. Crop Sci 41:611–619CrossRefGoogle Scholar
  97. Kolmer JA, Long DL, Hughes ME (2008) Physiologic specialization of Puccinia triticina on wheat in the United States in 2006. Plant Dis 92:1241–1246CrossRefGoogle Scholar
  98. Kolmer JA, Anderson JE, Flor JM (2010) Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene Lr63 in wheat. Crop Sci 50(6):2392–2395CrossRefGoogle Scholar
  99. Kopahnke D, Brunsbach G, Miedaner T, Lind V, Rode J, Schliephake E, Orden F (2009) Screening of Triticum monococcum and T. dicoccum to identify new sources of resistance to fusarium head blight. Crop plant resistance to biotic and abiotic factors: current potential and future demands. Proceedings of the 3rd International Symposium on Plant Protection and Plant Health in Europe, Julius Kühn-Institut, Berlin-Dahlem, Germany, 14–16 May 2009, pp.321–327Google Scholar
  100. Kumar S, Stack RW, Friesen TL, Faris JD (2007) Identification of a novel fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592–597CrossRefPubMedGoogle Scholar
  101. Kuraparthy V, Sood S, See DR, Gill BS (2009) Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats. Crop Sci 49(1):120–126CrossRefGoogle Scholar
  102. Kuraparthy V, Sood S, Guedira GB, Gill BS (2011) Development of a PCR assay and marker-assisted transfer of leaf rust resistance gene Lr58 into adapted winter wheats. Euphytica 180:227–234CrossRefGoogle Scholar
  103. Kuzuoglu-Ozturk D, Yalcinkaya CO, Akpinar BA et al (2012) Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response. Planta 236:1081–1092.  https://doi.org/10.1007/s00425-012-1657-3 CrossRefPubMedGoogle Scholar
  104. Law CN, Wolfe MS (1966) Location for genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol 8:462–470CrossRefGoogle Scholar
  105. Li G, Fang T, Zhang H (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:531–539CrossRefPubMedGoogle Scholar
  106. Lijavetzky D, Muzzi G, Wicker T et al (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42(6):1176–1182CrossRefPubMedGoogle Scholar
  107. Ling H-Q, Zhao S, Wang J (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496:87–90CrossRefPubMedGoogle Scholar
  108. Linnaeus C (1753) Tomus I. Sp. Pl. May 1753: i–xii 1–560Google Scholar
  109. Liu J, Chang ZJ, Zhang XJ, Yang ZJ, Li XQ, Jia JQ, Zhan HX, Guo HJ, Wang JM (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274CrossRefPubMedGoogle Scholar
  110. Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29CrossRefGoogle Scholar
  111. Liu S, Yu L-X, Singh RP, Jin Y, Sorrells ME, Anderson JA (2010) Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet 120:691–697CrossRefPubMedPubMedCentralGoogle Scholar
  112. Liu WX, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO (2011) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682CrossRefPubMedPubMedCentralGoogle Scholar
  113. Liu M, Luo JT, Fan CL, Yi YJ, Zhang LQ, Yuan ZW, Ning SZ, Zheng YL, Liu DC, Hao M (2017) Introgression of powdery mildew resistance gene Pm56 on rye 6RS to wheat. Catalogue of gene symbols for wheat: 2017 supplementGoogle Scholar
  114. Liu W, Koo DH, Xia Q, Li C, Bai F, Song Y, Friebe B, Gill BS (2017a) Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet 130(4):841–848.  https://doi.org/10.1007/s00122-017-2855-y CrossRefPubMedPubMedCentralGoogle Scholar
  115. Lucas S, Dogan E, Budak H (2011) TMPIT1 from wild emmer wheat: first characterisation of a stress-inducible integral membrane protein. Gene 483(1-2):22–28CrossRefPubMedPubMedCentralGoogle Scholar
  116. Lucas S, Durmaz E, Akpnar BA, Budak H (2011a) The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol Biochem 49(3):346–351CrossRefPubMedPubMedCentralGoogle Scholar
  117. Luo PG, Luo HY, Chang ZJ, Zhang HY, Zhang M, Ren ZL (2009) Characterization and chromosomal location of Pm40 in common wheat: a new gene for resistance to powdery mildew derived from Elytrigia intermedium. Theor Appl Genet 118:1058–1064CrossRefGoogle Scholar
  118. Lutz J, Hsam SLK, Limpert E, Zeller FJ (1995) Chromosomal location of powdery mildew resistance genes in Triticum aestivum L. (common wheat). 2. Genes Pm2 and Pm19 from Aegilops squarrosa L. Heredity 74:152–156CrossRefGoogle Scholar
  119. MacCaferri M, Ricci A, Salvi S et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663.  https://doi.org/10.1111/pbi.12288 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GHJ, Mcdonald BA (2014) Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95–107CrossRefPubMedPubMedCentralGoogle Scholar
  121. Mago R, Spielmeyer W, Lawrence G et al (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104(8):1317–1324.  https://doi.org/10.1007/s00122-002-0879-3 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Mago R, Bariana HS, Dundas IS, Spielmeyer W, Lawrence GJ, Pryor AJ, Ellis JG (2005) Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet 111:496–504CrossRefPubMedGoogle Scholar
  123. Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, Mcintosh RA, Pryor AJ, Ellis JG (2005a) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50CrossRefPubMedGoogle Scholar
  124. Mago R, Zhang P, Bariana HS, Verlin DC, Bansal UK, Ellis JG, Dundas IS (2009) Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor Appl Genet 124:65–70Google Scholar
  125. Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744CrossRefPubMedGoogle Scholar
  126. Mago R, Verlin D, Zhang P, Bansal U, Bariana HS, Jin Y, Ellis J, Hoxha S, Dundas I (2013) Development of wheat–Aegilops speltoides recombinants and simple PCR based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet 26(12):2943–2955.  https://doi.org/10.1007/s00122-013-2184-8 CrossRefGoogle Scholar
  127. Maher CA, Kumar-Sinha C, Cao X et al (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458(7234):97–101.  https://doi.org/10.1038/nature07638 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541CrossRefGoogle Scholar
  129. Marais GF, Mccallum B, Marais AS (2008) Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed 127(4):340–345CrossRefGoogle Scholar
  130. Marais F, Marais A, McCallum B, Pretorius Z (2009) Transfer of Leaf Rust and Stripe Rust Resistance Genes and from Req. ex Bertol. to Common Wheat. Crop Sci 49(3):871Google Scholar
  131. Marais GF, Badenhorst PE, Eksteen A, Pretorius ZA (2010) Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica 171(1):15–22CrossRefGoogle Scholar
  132. McGrann GR, Smith PH, Burt C, Mateos GR, Chama TN, MacCormack R, Wessels E, Agenbag G, Boyd LA (2014) Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J Plant Sci Mol Breed 3:2.  https://doi.org/10.7243/2050-2389-3-2 CrossRefGoogle Scholar
  133. McIntosh RA, Dyck PL, The TT, Cusick J, Milne DL (1984) Cytogenetical studies in wheat .XIII. Sr35- a 3rd gene from Triticum monococcum for resistance to Puccinia graminis tritici. Zeit für Pflaz 92:1–14Google Scholar
  134. McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Xia XC (2017) Catalogue of gene symbols for wheat: 2017 Supplement. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp
  135. Mebrate SA, Oerke EC, Dehne HW, Pillen K (2008) Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers. Euphytica 162:457–466CrossRefGoogle Scholar
  136. Mehta KC (1940) Further studies on cereal rusts in India, Scientific monograph, vol 14. Imperial Council of Agricultural Research, Delhi, p 19Google Scholar
  137. Mesterhazy A (1995) Types and components of resistance to fusarium head blight. Plant Breed 114:377e386CrossRefGoogle Scholar
  138. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. In: Proceedings of the National Academy of Sciences 88(21):9828–9832Google Scholar
  139. Miller AM, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Genet and Genom 275(2):193–203CrossRefGoogle Scholar
  140. Milus EA, Kristensen K, Hovmoller MS (2009) Evidence for increased aggressiveness in recent wide spread strain of Puccinia striiformis f. sp. tritici causing stripe rust of wheat. Phytopathology 97:344–351Google Scholar
  141. Miranda LM, Murphy J, Marshall PD, Leath S (2006) Pm34: A new powdery mildew resistance gene transferred from Aegilops tauschii Coss. to common wheat (Triticum aestivum L.). Theor Appl Genet 113:1497–1504CrossRefPubMedGoogle Scholar
  142. Miranda LM, Murphy JP, Marshall D, Cowger C, Leath S (2007) Chromosomal location of Pm35, a novel Aegilops tauschii derived powdery mildew resistance gene introgressed into common wheat (Triticum aestivum L.). Theor Appl Genet 114:1451–1456CrossRefPubMedPubMedCentralGoogle Scholar
  143. Mitra M (1931) A new bunt on wheat in India. Ann Appl Biol 18:178–179CrossRefGoogle Scholar
  144. Mohamed BA, Ibrahim AMH, Hays DB, Ristic Z, Jianming F (2010) Wild tetraploid wheat (Triticum turgidum L.) response to heat stress. J Crop Improv 24(3):228–243CrossRefGoogle Scholar
  145. Mohler V, Hsam SLK, Zeller FJ, Wenzel G (2001) An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breed 120:448–450CrossRefGoogle Scholar
  146. Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54(3):259–263CrossRefPubMedPubMedCentralGoogle Scholar
  147. Molnár I, Kubaláková M, Šimková H et al (2011) Chromosome isolation by flow sorting in Aegilops umbellulata and Ae. comosa and their allotetraploid hybrids Ae. biuncialis and Ae. geniculata. PLoS ONE 6:12. https://doi.org/10.1371/annotation/10931d7b-a866-4628-8c84-8c299c972080 CrossRefGoogle Scholar
  148. Molnár I, Vrána J, Farkas A et al (2015) Flow sorting of C-genome chromosomes from wild relatives of wheat Aegilops markgrafii, Ae. triuncialis and Ae. cylindrica, and their molecular organization. Ann Botany 116(2):189–200.  https://doi.org/10.1093/aob/mcv073 CrossRefGoogle Scholar
  149. Morin RD, Bainbridge M, Fejes A, Hirst M, Krzywinski M, Pugh TJ, McDonald H, Varhol R, Jones SJM, Marra MA (2008) Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Bio Tech 45(1):81–94Google Scholar
  150. Mujeeb-Kazi A, Diaz de Leon JL (2002) Conventional and alien genetic diversity for salt tolerant wheats: focus on current status and new germplasm development. In: Ahmad R, Malik KA (eds) Prospects for saline agriculture, vol 37. Springer, Dordrecht, pp 69–82CrossRefGoogle Scholar
  151. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364CrossRefPubMedPubMedCentralGoogle Scholar
  152. Nagarajan S, Joshi LM (1975) A historical account of wheat rust epidemics in India and their significance. Cereal Rusts Bull 3:25–33Google Scholar
  153. Nagarajan S (2008) Intellectual property rights as an option to promote excellence in agriculture. 38th Lal Bahadur Shastri Memorial Lecture, IARI, 7 Feb 2008Google Scholar
  154. Nevo E, Gorham J, Beiles A (1992) Variation for Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot 43:511–518CrossRefGoogle Scholar
  155. Nevo E, Krugman T, Beiles A (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed 110:338–341CrossRefGoogle Scholar
  156. Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685CrossRefPubMedPubMedCentralGoogle Scholar
  157. Oliver RE, Cai X, Xu SS, Chen X, Stack RW (2005) Wheat-alien species derivatives: a novel source of resistance to fusarium head blight in wheat. Crop Sci 45:1353–1360CrossRefGoogle Scholar
  158. Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830CrossRefGoogle Scholar
  159. Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48(5-6):625–632CrossRefPubMedGoogle Scholar
  160. Ozkan H, Tuna M, Kilian B, Mori N, Ohta S (2010) Genome size variation in diploid and tetraploid wild wheats. Aob Plants 2010:plq015.  https://doi.org/10.1093/aobpla/plq015 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of Barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788CrossRefPubMedGoogle Scholar
  162. Periyannan S, Bansal U, Bariana H, Deal K, Luo MC, Dvorak J, Lagudah E (2014) Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat. Theor Appl Genet 127:947–955CrossRefPubMedGoogle Scholar
  163. Perugini LD, Murphy JP, Marshall D, Brown-Guedira G (2008) Pm37 a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet 116:417–425CrossRefPubMedGoogle Scholar
  164. Pestka JJ (2010) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J 3:323–347CrossRefGoogle Scholar
  165. Petersen S, Lyerly JH, Worthington ML, Parks WR, Cowger C, Marshall DS, Brown-Guedira G, Murphy JP (2015) Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 128(2):303–312.  https://doi.org/10.1007/s00122-014-2430-8 CrossRefPubMedGoogle Scholar
  166. Piarulli L, Gadaletaa A, Manginia G, Signorilea MA, Pasquinib M, Blancoa A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106CrossRefPubMedGoogle Scholar
  167. Picinini EC, Fernandes JMC (1990) Occurrence of wheat blast Pyricularia oryzae in commercial fields in the state of Rio Grande do Sul Brazil. Fitopatol Bras 15:83–84Google Scholar
  168. Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Paul Schulze-Lefert P (2002) The Barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol 129:1076–1085.  https://doi.org/10.1104/pp.010954 CrossRefPubMedPubMedCentralGoogle Scholar
  169. Placido DF, Campbell MT, Folsom JJ, Cui X, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819CrossRefPubMedPubMedCentralGoogle Scholar
  170. Poland JA, Brown PJ, Sorrells ME et al (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253.  https://doi.org/10.1371/journal.pone.0032253 CrossRefPubMedPubMedCentralGoogle Scholar
  171. Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102.  https://doi.org/10.3835/plantgenome2012.05.0005 CrossRefGoogle Scholar
  172. Pradhan GP, Prasad PVV, Fritz AK, Kirkham MB, Gill BS (2012) High temperature tolerance in Aegilops species and its potential transfer to wheat. Crop Sci 52:292–304CrossRefGoogle Scholar
  173. Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624CrossRefGoogle Scholar
  174. Procunier JD, Townley-Smith TF, Fox S, Prashar S, Gray M, Kim WK, Czarnecki E, Dyck PL (1995) PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J Genet Breed 49:87–92Google Scholar
  175. Qi LL, Cao MS, Chen PD, Li WL, Liu DJ (1996) Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191–197CrossRefPubMedGoogle Scholar
  176. Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to fusarium head blight disease of wheat. Theor Appl Genet 117(7):1155–1166CrossRefPubMedGoogle Scholar
  177. Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167CrossRefPubMedGoogle Scholar
  178. Qiu YC, Sun XL, Zhou RH, Kong XY, Zhan SS, Jia JZ (2006) Identification of microsatellite markers linked to powdery mildew resistance gene Pm2 in wheat. Cereal Res Commun 34(4):1267–1273CrossRefGoogle Scholar
  179. Rahmatov M, Rouse MN, Nirmala J, Danilova T, Friebe B, Steffenson BJ, Johansson E (2016) A new 2DS·2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor Appl Genet 129:1383.  https://doi.org/10.1007/s00122-016-2710-6 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Ramirez-Gonzalez RH, Segovia V, Bird N et al (2015) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol 13:613–624CrossRefGoogle Scholar
  181. Raupp WJ, Singh S, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352CrossRefGoogle Scholar
  182. Riley R, Chapman V, Johnson R (1968) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res Camb 12:198–219CrossRefGoogle Scholar
  183. Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175CrossRefGoogle Scholar
  184. Roelfs AP (1977) Foliar fungal diseases of wheat in the People's Republic of China. Plant Dis Rep 61:836–841Google Scholar
  185. Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP based mapping. Euphytica 115:121–126CrossRefGoogle Scholar
  186. Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144CrossRefGoogle Scholar
  187. Rudd JC, Horsley RD, McKendry AL, Elias EM (2001) Host plant resistance genes for fusarium head blight: sources, mechanisms and utility in conventional breeding systems. Crop Sci 41:620–627CrossRefGoogle Scholar
  188. Rush CM, Stein JM, Bowden RL, Riemenschneider R, Boratynski T, Royer MH (2005) Status of karnal bunt of wheat in the United States 1996 to 2004. Plant Dis 89:212–223CrossRefGoogle Scholar
  189. Saari EE, Wilcoxson RD (1974) Plant disease situation of high-yielding dwarf wheats in Asia and Africa. Ann Rev Phytopath 12:49–68CrossRefGoogle Scholar
  190. Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341(6147):783–786CrossRefPubMedPubMedCentralGoogle Scholar
  191. Sarkar P, Stebbins GL (1956) Morphological evidence concerning the origin of the B genome in wheat. Am J Bot 43:297–304CrossRefGoogle Scholar
  192. Sax K (1922) Sterility in wheat hybrids. II. Chromosome behavior in partially sterile hybrids. Genetics 7:513–550PubMedPubMedCentralGoogle Scholar
  193. Schachermayr G, Siedler H, Gale MD, Winzeler H, Winzeler M, Keller B (1994) Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor Appl Genet 88:110–115CrossRefPubMedGoogle Scholar
  194. Schachtman DP, Munns R, Whitecross MI (1991) Variation in sodium exclusion and salt tolerance in Triticum tauschii. Crop Sci 31:992–997CrossRefGoogle Scholar
  195. Schmolk M, Mohler V, Hartl L, Zeller FJ, Sai L, Hsam K (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 29:449–456CrossRefGoogle Scholar
  196. Sears ER, Briggle LW (1969) Mapping the gene Pm1 for resistance to Erysiphe graminis f.p. tritici on chromosome 7A of wheat. Crop Sci 9:96–97CrossRefGoogle Scholar
  197. Shavrukov Y, Langridge P, Tester M (2009) Salinity tolerance and sodium exclusion in genus Triticum. Breed Sci 59:671–678CrossRefGoogle Scholar
  198. Shen XR, Kong LR, Ohm H (2004) Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet 108:808–813CrossRefPubMedGoogle Scholar
  199. Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147CrossRefPubMedGoogle Scholar
  200. Shroeder HW, Christensen JJ (1963) Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831–838Google Scholar
  201. Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor Appl Genet 122:649–658CrossRefPubMedGoogle Scholar
  202. Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155CrossRefGoogle Scholar
  203. Singh RP, William HM, Huerta-Espino J, Rosewarne G (2004) Wheat rust in Asia: meeting the challenges with old and new technologies. In: New directions for a diverse planet. Proc 4th Int Crop Sci Cong, 26 September–1 October 2004, Brisbane, AustraliaGoogle Scholar
  204. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P et al (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309CrossRefGoogle Scholar
  205. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481CrossRefPubMedGoogle Scholar
  206. Singh N, Jayaswal PK, Panda K et al (2015) Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep 5:11600.  https://doi.org/10.1038/srep11600 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Somers D, Fedak G, Clarke J, Cao W (2006) Mapping of FHB resistance QTLs in tetraploid wheat. Genome 49:1586–1593.  https://doi.org/10.1139/g06-127 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sorrells ME, Gustafson JP, Somers D et al (2011) Reconstruction of the Synthetic W7984 × Opata M85 wheat reference population. Genome 54:875–882.  https://doi.org/10.1139/g11-054 CrossRefPubMedPubMedCentralGoogle Scholar
  209. Sourdille P, Tavaud M, Charmet G, Bernard M (2001) Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes. Theor Appl Genet 103:346–352CrossRefGoogle Scholar
  210. Spielmeyer W, Bariana H, Laroche A, Gill BS, Lagudah ES (2000) NBS-LRR sequence family is associated with leaf and stripe rust resistance on the end of homoeologous chromosome group 1S of wheat. Theor Appl Genet 101(7):1139–1144CrossRefGoogle Scholar
  211. Stack RW, Elias EM, Fetch JM, Miller JD, Joppa LR (2002) Fusarium head blight reaction of Langdon durum – Triticum dicoccoides chromosome substitution lines. Crop Sci 42:637–642CrossRefGoogle Scholar
  212. Steed A, Chandler E, Thomsett M, Gosman N, Faure S, Nicholson P (2005) Identification of type I resistance to fusarium head blight controlled by a major gene located on chromosome 4A of Triticum macha. Theor Appl Genet 111:521–529CrossRefPubMedGoogle Scholar
  213. Stein N, Feuillet C, Wicker T et al (2000) Subgenome chromosome walking in wheat: A 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97(24):13436–13441CrossRefPubMedGoogle Scholar
  214. Steiner B, Lemmens M, Griesser M, Scholz U, Schondelmaier J, Buerstmayr H (2004) Molecular mapping of resistance to fusarium head blight in the spring wheat cultivar Frontana. Theor Appl Genet 109:215–224CrossRefPubMedGoogle Scholar
  215. Steuernagel B, Periyannan SK, Hernández-Pinzón I et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34(6):652–655.  https://doi.org/10.1038/nbt.3543 CrossRefPubMedGoogle Scholar
  216. Streck NA (2005) Climate change and agro-ecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development and yield. Cienc Rural 35(3):730–740CrossRefGoogle Scholar
  217. Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 95(4):622–628CrossRefGoogle Scholar
  218. Tagle AG, Chuma I, Tosa Y (2015) Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495–499CrossRefPubMedGoogle Scholar
  219. Tar M, Purnhauser L, Csõsz M (2008) Identification and localization of molecular markers linked to the Lr52 leaf rust resistance gene of wheat. Cereal Res Commun 36:409–415CrossRefGoogle Scholar
  220. Tashiro T, Wardlaw IF (1989) A comparison of the effect of high temperature on grain development in wheat and rice. Ann Bot 64(1):59–65CrossRefGoogle Scholar
  221. The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat IX. Monosomic analysis, telocentric mapping and linkage relationship of gene Sr21, Pm4 and Mle. Aust J Biol Sci 32:115–125Google Scholar
  222. Thind AK, Wicker T, Šimková H et al (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol 35:793–796.  https://doi.org/10.1038/nbt.3877 CrossRefPubMedGoogle Scholar
  223. Thomas J, Nilmalgoda S, Hiebert C, McCallum B, Humphreys G, DePauw R (2010) Genetic markers and leaf rust resistance of the wheat gene Lr32. Crop Sci 50:2310–2317.  https://doi.org/10.2135/cropsci2010.02.0065 CrossRefGoogle Scholar
  224. Tiwari VK, Wang S, Sehgal S et al (2014) SNP discovery for mapping alien introgressions in wheat. BMC Genomics 15:273CrossRefPubMedPubMedCentralGoogle Scholar
  225. Tiwari VK, Wang S, Danilova T et al (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata. Plant J 84:733–746CrossRefPubMedGoogle Scholar
  226. Tomar SMS, Singh SK, Sivasamy M, Vinod (2014) Wheat rusts in India: Resistance breeding and gene deployment – A review. Indian J Genet 74(2):129–156Google Scholar
  227. Tsilo TJ, Jin Y, Anderson JA (2008) Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci 48:253–261CrossRefGoogle Scholar
  228. Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112(1):97–105CrossRefPubMedGoogle Scholar
  229. Urashima AS, Lavorent NA, Goulart ACP, Mehta YR (2004) Resistance spectra of wheat cultivars and virulence diversity of Magnaporthe grisea isolates in Brazil. Fitopatol Bras 29:511–518CrossRefGoogle Scholar
  230. Va´gu´jfalvi A, Galiba G, Cattivelli L, Dubcovsky J (2003) The cold regulated transcriptional activator Cbf3 is linked to the frost tolerance locus Fr-A2 on wheat chromosome 5A. Mol Genet Genom 269:60–67Google Scholar
  231. Van Slageren MW (1994) Wild Wheats: a Monograph of Aegilops L. and Amblyopyrum (Jaub and Spach) Eig (Poaceae). Wageningen Agricultural University Papers, WageningenGoogle Scholar
  232. Vasudeva RS, Prasada R, Lele VC, Joshi LM, Pal BP (1962) Rust-resistant Varieties of Wheat in India. Indian Council of Agricultural Research, New DelhiGoogle Scholar
  233. Waines JG (1994) High temperature stress in wild wheats and spring wheats. Funct Plant Biol 21(6):705–715.  https://doi.org/10.1071/PP9940705 CrossRefGoogle Scholar
  234. Waldron BL, Moreno-Sevilla B, Anderson JA et al (1999) RFLP mapping of QTL for fusarium head blight resistance in wheat. Crop Sci 39:805–811.  https://doi.org/10.2135/cropsci1999.0011183X003900030032x CrossRefGoogle Scholar
  235. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C et al (2014a) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951CrossRefPubMedPubMedCentralGoogle Scholar
  236. Wang S, Wong D, Forrest K et al (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796.  https://doi.org/10.1111/pbi.12183 CrossRefPubMedPubMedCentralGoogle Scholar
  237. Wang Z, Xie J, Guo L et al (2018) Molecular Mapping Of YrTZ2, A stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii. J Integr Agric 17(0):60345–60347.  https://doi.org/10.1101/131003 CrossRefGoogle Scholar
  238. Wardlaw IF, Dawson IA, Munibi P (1989) The tolerance of wheat to high temperatures during reproductive growth. II. Grain development. Aust J Agric Res 40(1):15–24CrossRefGoogle Scholar
  239. Warham EJ (1986) Karnal bunt disease of wheat: a literature review. Trop Pest Manage 32:229–242CrossRefGoogle Scholar
  240. Wiersma AT, Pulman JA, Brown LK, Cowger C, Olson EL (2017) Identification of PmTA1662 from Aegilops tauschii. Theor Appl Genet 130(6):1123–1133.  https://doi.org/10.1007/s00122-017-2874-8 CrossRefPubMedPubMedCentralGoogle Scholar
  241. Winfield MO, Wilkinson PA, Allen AM et al (2012) Targeted re-sequencing of the genome coverage for molecular breeding. Mol Breed 37(3):20.  https://doi.org/10.1007/s11032-017-0622-z CrossRefGoogle Scholar
  242. Winfield MO, Allen AM, Burridge AJ et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14(5):1195–1206.  https://doi.org/10.1111/pbi.12485 CrossRefPubMedPubMedCentralGoogle Scholar
  243. Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem-rust-resistance gene Sr40 in wheat. Crop Sci 49:1681–1686.  https://doi.org/10.2135/cropsci2008.11.0666 CrossRefGoogle Scholar
  244. Wu Y, Zheng Z, Visscher PM, Yang J (2017) Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biol 18(1)Google Scholar
  245. Xiao J, Jin X, Jia X et al (2013) Transcriptome-based discovery of pathways and genes related to resistance against fusarium head blight in wheat landrace Wangshuibai. BMC Genom 14:197.  https://doi.org/10.1186/1471-2164-14-197 CrossRefGoogle Scholar
  246. Xie C, Sun Q, Ni Z, Yang T, Nevo E, Fahima T (2004) Identification of resistance gene analogue markers closely linked to wheat powdery mildew resistance gene Pm31. Plant Breed 123:198–200.  https://doi.org/10.1046/j.1439-0523.2003.00940.x CrossRefGoogle Scholar
  247. Xu SS, Jin Y, Klindworth DL, Wang R-C (2009) Evaluation and characterization of seedling resistances to stem rust Ug99 races in wheat-alien species derivatives. Crop Sci 49(6):2167–2175.  https://doi.org/10.2135/cropsci2009.02.0074 CrossRefGoogle Scholar
  248. Yadav IS, Sharma A, Kaur S, Nahar N, Bhardwaj S, Sharma TR, Chhuneja P (2016) Comparative temporal transcriptome profiling of wheat near isogenic line carrying Lr57 under compatible and incompatible interactions. Frontiers in Plant Science 7:1943.  https://doi.org/10.3389/fpls.2016.01943 CrossRefPubMedPubMedCentralGoogle Scholar
  249. Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy level allows cloning of powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538CrossRefPubMedGoogle Scholar
  250. Yahiaoui N, Kaur N, Keller B (2009) Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J 57:846–856CrossRefPubMedGoogle Scholar
  251. Yamamori M (1994) An N-band marker for gene Lr18 for resistance to leaf rust in wheat. Theor Appl Genet 89(5):643–646CrossRefPubMedGoogle Scholar
  252. Yi YJ, Liu HY, Huang XQ, An LZ, Wang F, Wang XL (2008) Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Plant Breed 127:116–120.  https://doi.org/10.1111/j.1439-0523.2007.01443.x CrossRefGoogle Scholar
  253. Yu G, Champouret N, Steuernagel B et al (2017) Discovery and characterization of two new stem rust resistance genes in Aegilops sharonensis. Theor Appl Genet 130(6):1207–1222CrossRefPubMedPubMedCentralGoogle Scholar
  254. Zaharieva M, Gaulin E, Havaux M, Acevedo E, Monneveux P (2001) Drought and heat responses in the wild wheat relative Aegilops geniculata Roth: Potential interest for wheat improvement. Crop Sci 41:1321–1329.  https://doi.org/10.2135/cropsci2001.4141321x CrossRefGoogle Scholar
  255. Zaı¨di I, Ebel C, Touzri M, Herzog E, Evrard JL, Schmit AC, Masmoudi K, Hanin M (2010) TMKP1 is a novel wheat stress responsive MAP kinase phosphatase localized in the nucleus. Plant Mol Biol 73:325–338.  https://doi.org/10.1007/s11103-010-9617-4 CrossRefGoogle Scholar
  256. Zeller FJ, Kong L, Hart L, Mohler V, Hsam SLK (2002) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.) gene Pm29 in line Pova. Euphytica 123(2):187–194CrossRefGoogle Scholar
  257. Zhan H, Li G, Zhang X, Li X, Guo H et al (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS One 9(11):e113455.  https://doi.org/10.1371/journal.pone.0113455 CrossRefPubMedPubMedCentralGoogle Scholar
  258. Zhang Q, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2012) Development and characterization of wheat lines with Sr37 for stem rust resistance derived from wild Timopheev’s wheat. Meeting Abstract, p 316Google Scholar
  259. Zhang J, Liu W, Han H et al (2015) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129–136.  https://doi.org/10.1016/j.ygeno.2015.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  260. Zhang N, Luo J, Rossman AY, Aoki T, Chuma I, Crous PW, Dean R, De Vries RP, Donofrio N, Hyde KD, Lebrun M-H, Talbot NJ, Tharreau D, Tosa Y, Valent B, Wang Z, Xu J-R (2016) Generic names in Magnaporthales. IMA Fungus 7:155–159CrossRefPubMedPubMedCentralGoogle Scholar
  261. Zhu ZD, Zhou RH, Kong XY, Dong YC, Jia JZ (2005) Microsatellite markers linked to two genes conferring resistance to powdery mildew in common wheat introgressed from Triticum carthlicum acc. PS5. Genome 48:585–590CrossRefPubMedPubMedCentralGoogle Scholar
  262. Zhuang Y, Gala A, Yen Y (2013) Identification of functional genic components of major Fusarium head blight resistance quantitative trait loci in wheat cultivar sumai 3. Mol Plant Microbe Interact 26:442–450.  https://doi.org/10.1094/MPMI-10-12-0235-R CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Satinder Kaur
    • 1
  • Suruchi Jindal
    • 1
  • Maninder Kaur
    • 1
  • Parveen Chhuneja
    • 1
  1. 1.School of Agricultural BiotechnologyPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations