Genome Editing for Crop Improvement: Status and Prospects

  • Pooja Manchanda
  • Yadhu Suneja


Genome editing using sequence-specific nucleases has been one of the fast-evolving technologies ever since the discovery of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated endonuclease) system. CRISPR locus present in the genomes of various bacteria and archaea offer a programmable defense mechanism against foreign agents like viruses. The understanding of this biological phenomenon leads to the development of genome editing tool for making specific modifications in the genomes of various organisms. The CRISPR/Cas9 technology basically depends upon two components: Cas9 enzyme and sgRNA (single-guide RNA). These two components are delivered into plant cells using different gene transfer methods such as Agrobacterium-mediated, biolistic (particle gun) approach, pre-assembled ribonucleoproteins followed by homology-based detection of target DNA by sgRNA, DNA cleavage by Cas9, and DNA repair by native cell machinery employing nonhomologous end joining. This usually leads to a frameshift and knockout mutation in the targeted gene. Providing a template DNA for homology-dependent repair can extend this technique to knock in mutations as well. This technology thus opens up a unique opportunity for directed alterations in chosen genes. Hence, CRISPR/Cas technology has huge potential as a precise and rapid plant breeding method. The absence of foreign DNA introduction (particularly in the case of gene knockout) is anticipated to attract fewer biosafety concerns as compared to GMOs in the regulatory frameworks coming up in different countries. This chapter reviews the CRISPR-Cas strategy by focusing on components of the tool kit and available variants, delivery into plant cells, and gene modification detection assays. A set of crop improvement-related studies, targeting genes of basic as well as applied significance, are listed to illustrate its current use.


Genome editing CRISPR/Cas9 Single-guide RNA Allelic variants 


  1. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR–Cas13. Nature 550:280–284. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:569–573CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baker M, (2012) Gene-editing nucleases. Nature Methods 9(1):23–26CrossRefPubMedGoogle Scholar
  5. Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. CrossRefPubMedGoogle Scholar
  7. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4(1):220–228CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beerli RR, Barbas CF III (2002) Engineering polydactyl zincfinger transcription factors. Nat Biotechnol 20:135–141CrossRefPubMedGoogle Scholar
  9. Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci 105(50):19821–19826CrossRefPubMedGoogle Scholar
  10. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targetedchromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175PubMedPubMedCentralGoogle Scholar
  11. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the codeof DNA binding specificity of TAL-type III effectors. Science 326:1509–1512CrossRefPubMedGoogle Scholar
  12. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333(6051):1843–1846. CrossRefPubMedGoogle Scholar
  13. Bolukbasi MF, Gupta A, Wolfe SA (2016) Creating and evaluating accurate CRISPR-cas9 scalpels for genomic surgery. Nat Methods 13:41–50CrossRefPubMedGoogle Scholar
  14. Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologousgene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174(2):935–942CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782CrossRefPubMedPubMedCentralGoogle Scholar
  16. Center MS, Richardson CC (1970) An endonuclease induced afer infection of Escherichia coli with bacteriophage T7. II. Specifcityof the enzyme toward single- and double-stranded deoxyribonucleic acid. J Biol Chem 245:6292–6299PubMedGoogle Scholar
  17. Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency precise modification of the tomato genome. Genome Biology 16:232
  18. Char SN, Neelakandan AK, Nahampun H, Frame B, Main M, Spalding MH, Becraft PW, Meyers BC, Walbot V, Wang K, Yang B (2017) An Agrobacterium-delivered CRISPR/Cas9system for high-frequency targeted mutagenesis in maize. Plant Biotechnol J 15:257–268CrossRefPubMedGoogle Scholar
  19. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNAguided endonucleases and nickases. Genome Res 24:132–141. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chuai G-H, Wang Q-L, Liu Q (2016) Insilico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol.
  21. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67CrossRefPubMedGoogle Scholar
  22. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detectinglocus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8(8):e1002861CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dickie P, McFadden G, Morgan AR (1987) The site-specifc cleavage of synthetic Holliday junction analogs and related branchedDNA structures by bacteriophage T7 endonuclease I. J Biol Chem 262:14826–14836PubMedGoogle Scholar
  24. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191CrossRefPubMedPubMedCentralGoogle Scholar
  25. Doudna JA, Charpentier E (2014) Genome editing- the new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096. CrossRefPubMedGoogle Scholar
  26. Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA, Han F (2018) High efficiency genome editing using a dmc1 promoter-controlledCRISPR/Cas9 system in maize. Plant Bitechnol J.
  27. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517–521. CrossRefPubMedGoogle Scholar
  28. Fujita T, Fujii H (2014) Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR. PLoS One.
  29. Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas –based methods for genome engineering. Trends Biotechnol 31:397–405. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotianatabacum. Plant Mol Biol 87:99–110CrossRefPubMedGoogle Scholar
  31. Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sanchez-Leon S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262CrossRefPubMedGoogle Scholar
  32. Güell M, Yang L, Church GM (2014) Genome editing assessment using CRISPR genomeanalyzer (CRISPR-GA). Bioinformatics 30(20):2968–2970CrossRefPubMedPubMedCentralGoogle Scholar
  33. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly J-S, Concordet J-P (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940CrossRefPubMedGoogle Scholar
  35. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 122:122–123CrossRefGoogle Scholar
  36. Hendel A, Kildebeck EJ, Fine EJ, Clark JT, Punjya N, Sebastiano V, Bao G, Porteus MH (2014) Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep 7(1):293–305CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hendel A, Fine EJ, Bao G, Porteus MH (2015) Quantifying on- and off-target genomeediting. Trends Biotechnol 33(2):132–140CrossRefPubMedPubMedCentralGoogle Scholar
  38. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170CrossRefPubMedGoogle Scholar
  39. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity ofRNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575CrossRefPubMedGoogle Scholar
  42. Jensen SP, Febres VJ, Moore GA (2014) Cell penetrating peptides as an alternative transformation method in citrus. J Citrus Pathol 1:10–15Google Scholar
  43. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41(20):e188CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821CrossRefGoogle Scholar
  45. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. eLife 2:e00471. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343:1247997CrossRefPubMedPubMedCentralGoogle Scholar
  47. Johnson RA, Gurevich V, Filler S, Samach A, Levy AA (2015) Comparative assessments of CRISPR-Cas nucleases cleavageefficiency in planta. Plant Mol Biol 87:143–156CrossRefPubMedGoogle Scholar
  48. Kanchiswamy CN (2016) DNA-free genome editing methods for targeted crop improvement. Plant Cell Rep 35:1469–1474CrossRefPubMedGoogle Scholar
  49. Kapusi E, Corcuera-Gómez M, Melnik S, Stoger E (2017) Heritable genomic fragment deletions and small indels in the putative ENGase gene induced by CRISPR/Cas9 in barley. Front Plant Sci 8.
  50. Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Casgeneome editing tool: application in improvement of crops. Front Plant Sci 7.
  51. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334. CrossRefPubMedGoogle Scholar
  52. Kim Y, Kweon J, Kim A, Chon JK, Yoo JY, Kim HJ, Kim S, Lee C, Jeong E, Chung E (2013) A library of TAL effector nucleases spanning the human genome. Nat Biotechnol 31(3):251–258CrossRefPubMedGoogle Scholar
  53. Kim S, Kim D, Cho SW, Kim J, Kim JS (2014) Highly efficient RNA guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:1012–1019. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kim H, Kim ST, Riju J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf-1 mediated DNA-free plant genome editing. Nat Commun 8:14406CrossRefPubMedPubMedCentralGoogle Scholar
  55. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424CrossRefPubMedPubMedCentralGoogle Scholar
  56. Koo T, Lee J, Kim JS (2015) Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9. Mol Cells 38:475–481. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, andGrill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesiswith virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683CrossRefPubMedGoogle Scholar
  58. Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57CrossRefPubMedGoogle Scholar
  59. Kumar D, Anandalakshmi SP, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294Google Scholar
  60. Kuzma J, Kokotovich A (2011) Renegotiating GM crop regulation. EMBO Rep 12(9):883–888CrossRefPubMedPubMedCentralGoogle Scholar
  61. Lee HJ, Kweon J, Kim E, Kim S, Kim JS (2012) Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res 22:539–548. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Li J, Zhang X, Sun Y, Zhang J, Du W, Guo X, Li S, Zhao Y, Xia L (2018) Efficient allelic replacement in rice by gene editing: a case study of the NRT1.1B gene. J Integr Plant Biol.
  63. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and CRISPR/Cas system. J Genet Genom 41:63–68CrossRefGoogle Scholar
  64. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commum 8:14261CrossRefGoogle Scholar
  65. Lloyd A, Plaisier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102(6):2232–2237CrossRefPubMedGoogle Scholar
  66. Lu Y, Zhu JK (2017) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant 10:523–525CrossRefPubMedGoogle Scholar
  67. Ma X, Mau M, Sharbel TF (2018) Genome editing for global food security. Trends Biotechnol 36(2):123–127CrossRefPubMedGoogle Scholar
  68. Macovei A, Sevilla NR, Cantos C, Jonson G, Loedin IS, Cermak T, Voytas D, Choi IR, Mohanty PC (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to rice tungro spherical virus (RTSV). Plant Biotechnol J.
  69. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301CrossRefPubMedPubMedCentralGoogle Scholar
  70. Maggio I, Goncalves MA (2015) Genome editing at the cross-roads of delivery, specificity and fidelity. Trends Biotechnol 33(5):280–291CrossRefPubMedGoogle Scholar
  71. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826CrossRefPubMedPubMedCentralGoogle Scholar
  72. Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Kanchiswamy CN (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoprotein. Front Plant Sci 7.
  73. Martin-Ortigosa S, Wang K (2014) Proteolistics: a biolistics method for intracellular delivery of proteins. Transgenic Res 23:743–756CrossRefPubMedGoogle Scholar
  74. Masani MY, Noll GA, Parveez GK, Sambanthamurthi R, Prufer D (2014) Efficient transformation of oil palm protoplasts by PEG mediated transfection and DNA microinjection. PLoS One 9:e96831. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Mashal RD, Koontz J, Sklar J (1995) Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet 9:177–183CrossRefPubMedGoogle Scholar
  76. Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu LJ (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res 23:1233–1236CrossRefPubMedPubMedCentralGoogle Scholar
  77. Mojica F, Garcia-Martinez J, Soria E (2005) Intervening sequences ofregularly spaced prokaryotic repeats derive from foreign geneticelements. J Mol Evol 60:174–182CrossRefPubMedGoogle Scholar
  78. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740CrossRefPubMedGoogle Scholar
  79. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 11:326Google Scholar
  80. Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5):935–949CrossRefPubMedPubMedCentralGoogle Scholar
  81. Park CY, Kim J, Kweon J, Son JS, Lee JS, Yoo JE, Cho SR, Kim JH, Kim JS, Kim DW (2014) Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs. Proc Natl Acad Sci USA 111:9253–9258. CrossRefPubMedGoogle Scholar
  82. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee Y-L, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genomeediting using zinc-finger nucleases. Nat Biotechnol 26(7):808–816CrossRefPubMedPubMedCentralGoogle Scholar
  83. Periwal V (2017) A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief Bioinform 18:698–711PubMedGoogle Scholar
  84. Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 51:653–663Google Scholar
  85. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183CrossRefPubMedPubMedCentralGoogle Scholar
  86. Qiu P, Shandilya H, Alessio JMD, Connor KO, Durocher J, Gerard GF (2004) Mutation detection using surveyor™ nuclease. BioTechniques 36:702–707CrossRefPubMedGoogle Scholar
  87. Ramleet MK, Yan T, Cheung AM, Chuah CT, Li S (2015) High throughput genotyping of CRISPR/Cas9 mediated mutants using fluorescent PCR capillary gel electrophoresis. Sci Rep 5:15581CrossRefGoogle Scholar
  88. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protocol 8(11):2281–2308Google Scholar
  89. Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910CrossRefPubMedGoogle Scholar
  90. Santiago Y, Chan E, Liu P-Q, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105(15):5809–5814CrossRefPubMedPubMedCentralGoogle Scholar
  91. Segal DJ, Dreier B, Beerli RR, Barbas CF (1999) Towards controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 50-GNN-30 DNA target sequences. Proc Natl Acad Sci USA 96(6):2758–2763CrossRefPubMedGoogle Scholar
  92. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using CRISPR/Cas system. Nat Biotechnol 31(8):686–688CrossRefPubMedGoogle Scholar
  93. Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395CrossRefPubMedGoogle Scholar
  94. Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes WC (2014) Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods 11:399–402CrossRefPubMedGoogle Scholar
  95. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS8 variants generated byCRISPR-Cas9 improve maize grain yield under field droughtstress conditions. Plant Biotechnol J 15:207–216CrossRefPubMedGoogle Scholar
  96. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the cropspeciesZea mays using zinc-finger nucleases. Nature 459:437–441CrossRefPubMedGoogle Scholar
  97. Skipper KA, Mikkelson JG (2015) Delivering the goods for genome engineering and editing. Hum Gene Ther 26:486. CrossRefPubMedGoogle Scholar
  98. Streubel J, Blücher C, Landgraf A, Boch J (2012) TAL effector RVD specificities and efficiencies. Nat Biotechnol 30:593–595CrossRefPubMedGoogle Scholar
  99. Sun Y, Jiao G, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, Xia L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298PubMedPubMedCentralGoogle Scholar
  100. Sung YH, Baek I-J, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim J-S, Lee H-W (2013) Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 31(1):23–24CrossRefPubMedGoogle Scholar
  101. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AM (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun 7:13274CrossRefPubMedPubMedCentralGoogle Scholar
  102. Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271CrossRefPubMedGoogle Scholar
  103. Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, Xia X, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield. Sci Rep 7:14438. CrossRefPubMedPubMedCentralGoogle Scholar
  104. Taylor S, Scott R, Kurtz R, Fisher C, Patel V, Bizouarn F (2010) A practical guide to high resolution melt analysis genotyping. Bio-Rad Laboratories, Inc, HerculesGoogle Scholar
  105. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445CrossRefPubMedPubMedCentralGoogle Scholar
  106. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. Gene Genomes Genet 3(12):2233–2238Google Scholar
  107. Vouillot L, Télie A, Pollet N (2015) Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered byengineered nucleases. Genes Genomes Genet 5:407–415Google Scholar
  108. Voytas DF (2013) Plant genome engineering with sequence-specific nucleases. Annu Rev Plant Biol 64:30.1–30.24CrossRefGoogle Scholar
  109. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293CrossRefPubMedGoogle Scholar
  110. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qui J-L (2014) Simaltaneous editing of three homoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947. CrossRefPubMedPubMedCentralGoogle Scholar
  111. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016a) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One.
  112. Wang H, Russa ML, Qi LS (2016b) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264CrossRefPubMedGoogle Scholar
  113. Wang W, Akhunova A, Chao S, Akhunov E (2016c) Optimizing multiplex CRISPR/Cas9 based genome editing for wheat. Biorxiv.
  114. Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S (2011) A modular cloning system for standardized assembly ofmultigene constructs. PLoS One 6(2):e16765.; PMID:21364738. CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wei Y, Terns RM, Terns MP (2015) Cas9 function and host genome sampling in type II-A CRISPR–Cas adaptation. Genes Dev 29(4):356–361CrossRefPubMedPubMedCentralGoogle Scholar
  116. Weinthal D, Tovkach A, Zeevi V, Tzfira T (2010) Genome editing in plant cells byzinc finger nucleases. Trends Plant Sci 15:308–321CrossRefPubMedGoogle Scholar
  117. Wolter F, Puchta H (2017) Knocking out consumers concerns and regulator’s rules: efficient use of CRISPR/Cas9 ribonucleoprotein complexes for genome editing in cereals. Genome Biol 18:43CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218CrossRefPubMedPubMedCentralGoogle Scholar
  119. Woo JW, Kim J, Kwon S II, Corvalan C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with pre-assembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164CrossRefPubMedGoogle Scholar
  120. Wright DA, Townsend JA, Winfrey RJ Jr, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44(4):693–705CrossRefPubMedGoogle Scholar
  121. Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B (2014) CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics 30:1180–1182CrossRefPubMedGoogle Scholar
  122. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacteriumtumefacians-mediated CRISPR/Cas system in rice. Rice 7:5CrossRefPubMedPubMedCentralGoogle Scholar
  123. Xu R-F, Li H, Qin R-Y, Li J, Qiu C-H, Yang Y-C, Ma H, Li L, Wei P-C, Yang J-B (2015) Generation of inheritable and “transgene clean” targeted genome-modified rice in latergenerations using the CRISPR/Cas9system. Sci Rep 5:11491 11491
  124. Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2016) Generation of targeted mutant rice using CRISPR/Cpf1 system. Plant Biotechnol J.
  125. Yin K, Han T, Liu G, Chen T, Wang Y, Yu AYL, Liu Y (2015) A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediatedplant genome editing. Sci Rep 5:14926CrossRefPubMedPubMedCentralGoogle Scholar
  126. Yu C, Zhang Y, Yao S, Wei Y (2014) A PCR based protocol for detecting indel mutationsinduced by TALENs and CRISPR/Cas9 in zebrafish. PLoS One 9(6):e98282CrossRefPubMedPubMedCentralGoogle Scholar
  127. Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific andhomozygous targeted gene editing in rice in onegeneration. Plant Biotechnol J 12:797–807CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J 91:714. CrossRefPubMedGoogle Scholar
  130. Zischewski J, Fisher R, Bortesi L (2016) Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 35:95–104CrossRefPubMedGoogle Scholar
  131. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, Qiu JL, Wang D, Gao C (2017) Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35:438–440CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Pooja Manchanda
    • 1
  • Yadhu Suneja
    • 2
  1. 1.School of Agricultural BiotechnologyPunjab Agricultural UniversityLudhianaIndia
  2. 2.Department of BiochemistryPunjab Agricultural UniversityLudhianaIndia

Personalised recommendations