Genomic-Assisted Enhancement in Stress Tolerance for Productivity Improvement in Sorghum

  • Kirandeep K. Romana
  • Girish Chander
  • Santosh Deshpande
  • Rajeev Gupta


Sorghum [Sorghum bicolor (L.) Moench], the fifth most important cereal crop in the world after wheat, rice, maize, and barley, is a multipurpose crop widely grown for food, feed, fodder, forage, and fuel, vital to the food security of many of the world’s poorest people living in fragile agroecological zones. Globally, sorghum is grown on ~42 million hectares area in ~100 countries of Africa, Asia, Oceania, and the Americas. Sorghum grain is used mostly as food (~55%), in the form of flat breads and porridges in Asia and Africa, and as feed (~33%) in the Americas. Stover of sorghum is an increasingly important source of dry season fodder for livestock, especially in South Asia. In India, area under sorghum cultivation has been drastically come down to less than one third in the last six decades but with a limited reduction in total production suggesting the high-yield potential of this crop. Sorghum productivity is far lower compared to its genetic potential owing to a limited exploitation of genetic and genomic resources developed in the recent past. Sorghum production is challenged by various abiotic and biotic stresses leading to a significant reduction in yield. Advances in modern genetics and genomics resources and tools could potentially help to further strengthen sorghum production by accelerating the rate of genetic gains and expediting the breeding cycle to develop cultivars with enhanced yield stability under stress. This chapter reviews the advances made in generating the genetic and genomics resources in sorghum and their interventions in improving the yield stability under abiotic and biotic stresses to improve the productivity of this climate-smart cereal.


Genomics Markers Molecular breeding Nutrition Sorghum Stress tolerance 



The authors greatly acknowledge the funding support from Newton fund (DBT-India and BBSRC, UK) for CINTRIN (Cambridge-India Network for Translational Research in Nitrogen) (#BT/IN/UK-VNC/42/RG/2015-16) to RG, KKR, and SD.


  1. Anami SE, Zhang LM, Xia Y, Zhang YM, Liu ZQ, Jing HC (2015) Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food and Energy Security 4(1):3–24CrossRefGoogle Scholar
  2. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89(7):925–940PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aruna C, Bhagwat VR, Sharma V, Hussain T, Ghorade RB, Khandalkar HG, Audilakshmi S, Seetharama N (2011) Identification and validation of genomic regions that affect shoot fly resistance in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 122:1617–1630PubMedCrossRefGoogle Scholar
  4. Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential impact on human health. Phytochemistry 65(9):1199–1221PubMedCrossRefGoogle Scholar
  5. Bergquist RR (1973) Colletotrichum graminicola on Sorghum bicolor in Hawaii. Plant Dis Rep 57(3):272–275Google Scholar
  6. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664CrossRefGoogle Scholar
  7. Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer JL, Rami JF, Rivallan R, Li Y, Lu P (2013 Apr 2) Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 8(4):e59714PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blum A, Ebercon A (1976) Genotypic responses in Sorghum to drought stress. III. Free Proline accumulation and drought resistance 1. Crop Sci 16(3):428–431CrossRefGoogle Scholar
  9. Blummel M, Deshpande SP, Kholova J, Vadez V (2015) Introgression of staygreen QLT’s for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crop Res:180Google Scholar
  10. Borphukan B (2017) Evaluation of minicore germplasm of rabi sorghum for charcoal rot resistance and yield component traits, expression analysis of selected r-genes during charcoal rot disease incidence (Doctoral dissertation, UASD).Google Scholar
  11. Borrell AK, Mullet JE, George-Jaeggli B, Van Oosterom EJ, Hammer GL, Klein PE, Jordan DR (2014) Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J Exp Bot 65:6251–6263PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP (2017 Jun 1) Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206(2):573–585PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchnnan B, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1249Google Scholar
  14. Burrell AM, Sharma A, Patil NY, Collins SD, Anderson WF, Rooney WL, Klein PE (2015) Sequencing of an anthracnose-resistant sorghum genotype and mapping of a major QTL reveal strong candidate genes for anthracnose resistance. Crop Sci 55(2):790–799CrossRefGoogle Scholar
  15. Chowdhury SI, Wardlaw IF (1978) The effect of temperature on kernel development in cereals. Aust J Agric Res 29(2):205–223CrossRefGoogle Scholar
  16. Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262(3):579–588PubMedCrossRefGoogle Scholar
  17. Cuevas HE, Prom LK, Erpelding JE (2014) Inheritance and molecular mapping of anthracnose resistance genes present in sorghum line SC112-14. Mol Breed 34(4):1943–1953CrossRefGoogle Scholar
  18. Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3(2):117–124PubMedCrossRefGoogle Scholar
  19. Deshpande S, Rakshit S, Manasa KG, Pandey S, Gupta R (2016) Genomic Approaches for Abiotic Stress Tolerance in Sorghum. In: The Sorghum Genome 2016. Springer, Cham, pp 169–187CrossRefGoogle Scholar
  20. Dicko MH, Gruppen H, Traoré AS, van Berkel WJ, Voragen AG (2005) Evaluation of the effect of germination on phenolic compounds and antioxidant activities in sorghum varieties. J Agric Food Chem 53(7):2581–2588PubMedCrossRefGoogle Scholar
  21. Dicko MH, Gruppen H, Traoré AS, Voragen AG, Van Berkel WJ (2006) Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. Afr J Biotechnol 5(5):384–395Google Scholar
  22. Dhillon MK, Sharma HC, Pampapathy G, Reddy BVS (2006) Cytoplasmic male sterility affects expression of resistance to shoot bug (Peregrinus maidis), sugarcane aphid (Melanaphis sacchari) and spotted stem borer (Chilo partellus) in sorghum. 2(1)Google Scholar
  23. Downes RW (1972) Effect of temperature on the phenology and grain yield of Sorghum bicolor. Aust J Agric Res 23(4):585–594CrossRefGoogle Scholar
  24. Erpelding JE (2010) Field assessment of anthracnose disease response for the Sorghum Germplasm collection from the Mopti region. Am J Agric Biol Sci 5(3):363–369CrossRefGoogle Scholar
  25. Folkertsma RT, Sajjanar GM, Reddy BV, Sharma HC, Hash CT (2003) Genetic mapping of QTL associated with sorghum shoot fly (Atherigona soccata) resistance in sorghum (Sorghum bicolor). Final abstracts guide, plant & animal genome XIGoogle Scholar
  26. Frederiksen RA (1984) Anthracnose stalk rot. Sorghum root and stalk rots, a critical review, 37–40Google Scholar
  27. Gelli M, Duo Y, Konda AR, Zhang C, Holding D, Dweikat I (2014) Identification of differentially expressed genes between sorghum genotypes with contrasting nitrogen stress tolerance by genome-wide transcriptional profiling. BMC Genomics 15(1):179PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gelli M, Mitchell SE, Liu K, Clemente TE, Weeks DP, Zhang C, Holding DR, Dweikat IM (2016) Mapping QTLs and association of differentially expressed gene transcripts for multiple agronomic traits under different nitrogen levels in sorghum. BMC Plant Biol 16(1):16PubMedPubMedCentralCrossRefGoogle Scholar
  29. Habyarimana E, Lorenzoni C, Busconi M (2010) Search for new stay-green sources in Sorghum bicolor (L.) Moench. Maydica 55(3):187Google Scholar
  30. Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J (2007) Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338PubMedCrossRefGoogle Scholar
  31. Haussmann B, Mahalakshmi V, Reddy B, Seetharama N, Hash C, Geiger H (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106(1):133–142PubMedCrossRefGoogle Scholar
  32. Heald FD, Wolf FA (1912) A plant-disease survey in the vicinity of San Antonio, Texas. Govt. Print, OffCrossRefGoogle Scholar
  33. Hess DE, Bandyopadhyay R, Sissoko I (2002) Pattern analysis of sorghum genotype× environment interaction for leaf, panicle, and grain anthracnose in Mali. Plant Dis 86(12):1374–1382CrossRefGoogle Scholar
  34. Hsi DC (1956) Stalk rots of sorghum in eastern New Mexico. Plant Disease Reporter. 40:369–371Google Scholar
  35. ICRISAT (2018) Sorghum. Available at:
  36. Jabereldar AA, El Naim AM, Abdalla AA, Dagash YM (2017) Effect of water stress on yield and water use efficiency of Sorghum (Sorghum bicolor L. Moench) in semi-arid environment. Int J Agric For 7(1):1–6Google Scholar
  37. Jordan WR, Sullivan CY (1981) Reaction and resistance of grain sorghum to heat and drought. In: Sorghum in the eighties: proceedings of the international symposium on Sorghum, 2–7Google Scholar
  38. Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51(4):1444–1457CrossRefGoogle Scholar
  39. Jordan DR, Hunt CH, Cruickshank AW, Borrell AK, Henzell RG (2012) The relationship between the stay-green trait and grain yield in elite sorghum hybrids grown in a range of environments. Crop Sci 52(3):1153–1161CrossRefGoogle Scholar
  40. Jotwani MG (1978) Investigations on insect pests of sorghum and millets with special reference to host plant resistance. Final Technical Report (1972–1977). Research Bulletin of the Division of Entomology, Indian Agricultural Research Institute, New Delhi, India, p. 114Google Scholar
  41. Kapanigowda MH, Payne WA, Rooney WL, Mullet JE, Balota M (2014) Quantitative trait locus mapping of the transpiration ratio related to pre-flowering drought tolerance in sorghum (Sorghum bicolor). Funct Plant Biol 41(11):1049–1065CrossRefGoogle Scholar
  42. Karaya H, Njoroge K, Mugo S, Nderitu H (2009) Combining ability among Twenty Insect resistant maize inbred lines resistant to Chilo partellus and Busseola fusca stem borers. International Journal of Plant Production 3(1)Google Scholar
  43. Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103(2–3):266–276CrossRefGoogle Scholar
  44. Khan ZR, Hassanali A, Pickett JA, Wadhams LJ, Muyekho F (2003) Strategies for control of cereal stem borers and Striga weed in maize-based farming Systems in Eastern Africa involving ‘push-Pull’andallelopathic tactics, respectively. In: African crop science conference proceedings, vol 6. pp. 602–608Google Scholar
  45. Kiniry JR, Musser RL (1988) Response of kernel weight of sorghum to environment early and late in grain filling. Agron J 80(4):606–610CrossRefGoogle Scholar
  46. Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet 102(2–3):307–319CrossRefGoogle Scholar
  47. Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493PubMedCrossRefGoogle Scholar
  48. Krakowsky MD, Lee M, Woodman-Clikeman WL, Long MJ, Sharopova N (2004) QTL mapping of resistance to stalk tunneling by the European corn borer in RILs of maize population B73× De8 1. Crop Sci 44(1):274–282Google Scholar
  49. Kumar S, Kaur R, Kaur N, Bhandhari K, Kaushal N, Gupta K, Bains TS, Nayyar H (2011) Heat-stress induced inhibition in growth and chlorosis in mung bean (Phaseolus aureus Roxb.) is partly mitigated by ascorbic acid application and is related to reduction in oxidative stress. Acta Physiol Plant 33(6):2091CrossRefGoogle Scholar
  50. Kumar A, Kumar S, Dahiya K, Kumar S, Kumar M (2015) Productivity and economics of direct seeded rice (Oryza sativa L.). J Appl Nat Sci 7:410–416CrossRefGoogle Scholar
  51. Li Y, Hill CB, Carlson SR, Diers BW, Hartman GL (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breed 19(1):25–34CrossRefGoogle Scholar
  52. Lobell DB, Gourdji SM (2012) The influence of climate change on global crop productivity. Plant Physiol 160(4):1686–1697PubMedPubMedCentralCrossRefGoogle Scholar
  53. Mace ES, Jordan DR (2010) location of major effect genes in sorghum (Sorghum bicolor (L.) Monech). Theor Appl Genet 121:1339–1356PubMedCrossRefGoogle Scholar
  54. Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of rich regions with significant implications for crop improvement. Theor Appl Genet.
  55. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Killian A, Wenzi P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13PubMedPubMedCentralCrossRefGoogle Scholar
  56. Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320PubMedPubMedCentralCrossRefGoogle Scholar
  57. Magalhaes JV, Garvin DF, Wang Y, Sorrells ME, Klein PE, Schaffert RE, Li L, Kochian LV (2004) Comparative mapping of a major aluminum tolerance gene in sorghum and other species in the Poaceae. Genetics 167(4):1905–1914PubMedPubMedCentralCrossRefGoogle Scholar
  58. Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39(9):1156PubMedCrossRefGoogle Scholar
  59. Mailafiya DM, Le Ru BP, Kairu EW, Calatayud PA, Dupas S (2009) Species diversity of lepidopteran stem borer parasitoids in cultivated and natural habitats in Kenya. J Appl Entomol 133(6):416–429CrossRefGoogle Scholar
  60. Maiti RK (1996) Sorghum science. Science Publishers, LebanonGoogle Scholar
  61. Maranville JW, Clark RB, Ross WM (1980) Nitrogen efficiency in grain sorghum. J Plant Nutr 2(5):577–589CrossRefGoogle Scholar
  62. Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134(1):1–20CrossRefGoogle Scholar
  63. Miller PR (1956) Plant disease situation in the United States. FAO Plant Production Bull 4:152–156Google Scholar
  64. Mohan SM, Madhusudhana R, Mathur K, Chakravarthi DV, Rathore S, Reddy RN, Satish K, Srinivas G, Mani NS, Seetharama N (2010) Identification of quantitative trait loci associated with resistance to foliar diseases in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 176(2):199–211CrossRefGoogle Scholar
  65. Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T (2013) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA 110:453–458PubMedCrossRefGoogle Scholar
  66. Mutava RN, Prasad PV, Tuinstra MR, Kofoid KD, Yu J (2011) Characterization of sorghum genotypes for traits related to drought tolerance. Field Crop Res 123(1):10–18CrossRefGoogle Scholar
  67. Nedumaran S, Abinaya P, Bantilan MC (2013) Sorghum and millets futures in Asia under changing socio-economic and climate scenarios, Socioeconomics Discussion Paper Series Number 2Google Scholar
  68. Nguyen CT (2014) The physiology and genetic of high temperature effects on growth and development of sorghum. PhD Thesis, School of Agriculture and Food Sciences, The University of Queensland.
  69. Nwanze KF (1997) Integrated management of stem borers of sorghum and pearl millet. Inter J Trop Insect Sci 17(1):1–8CrossRefGoogle Scholar
  70. Ozsolak F, Milos MM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98PubMedCrossRefGoogle Scholar
  71. Patil N, Klein R, Williams LC, Collins SE, Knoll J, Burrell M, Anderson FW, Rooney W, Klein P (2017) Quantitative trait loci associated with anthracnose resistance in Sorghum. Crop Sci 57Google Scholar
  72. Pastor-Corrales MA, Frederiksen RA (1980) Sorghum anthracnose. In: Sorghum Diseases a world Review, Proceedings of the International Workshop on Sorghum Diseases, ICRISAT, Hyderabad, India, 289–294, December 1978Google Scholar
  73. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457(7229):551PubMedCrossRefGoogle Scholar
  74. Perumal R, Menz MA, Mehta PJ, Katilé S, Gutierrez-Rojas LA, Klein RR (2009) Molecular mapping of Cg1, a gene for resistance to anthracnose (Colletotrichum sublineolum) in sorghum. Euphytica 165:597–606. CrossRefGoogle Scholar
  75. Phuong N, Stützel H, Uptmoor R (2013) Quantitative trait loci associated to agronomic traits and yield components in a Sorghum bicolor L. Moench RIL population cultivated under pre-flowering drought and well-watered conditions. Agric Sci 4 (2013) 4(12):781–791Google Scholar
  76. Porter RH (1926) A preliminary report of surveys for plant diseases in East China. Plant Dis Rep 46(Suppl):153–166Google Scholar
  77. Pradhan S (1971) Investigations on insect pests of sorghum and millets (1965-70). Final Technical Report. PL 480 project grant no. FG. In-227, Project No. A7-ENT-31, Division of Entomology IARI, New DelhiGoogle Scholar
  78. Prasad PV, Boote KJ, Allen LH Jr (2006) Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol 139(3–4):237–251CrossRefGoogle Scholar
  79. Prasad PV, Pisipati SR, Mutava RN, Tuinstra MR (2008) Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Sci 48(5):1911–1917CrossRefGoogle Scholar
  80. Prasad GS, Babu KS, Subbarayudu B, Bhagwat VR, Patil JV (2015) Identification of sweet Sorghum accessions possessing multiple resistance to shoot fly (Atherigona soccata Rondani) and spotted stem borer (Chilo partellus Swinhoe). Sugar Tech 17(2):173–180CrossRefGoogle Scholar
  81. Rai S, Jotwani MG, Jha D (1978) Economic injury level of shoot fly, Atherigona soccata (Rondani) on sorghum. Indian J Entomol 40(2):126–133Google Scholar
  82. Rakshit S, Swapna M, Dalal M, Sushma G, Ganapathy KN, Dhandapani A, Karthikeyan M, Talwar HS (2016) Post-flowering drought stress response of post-rainy sorghum genotypes. Indian J Plant Physiol 21(1):8–14CrossRefGoogle Scholar
  83. Ramu P, Deshpande SP, Senthilvel S, Jayashree B, Billot C, Deu M, Reddy LA, Hash CT (2010) In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Mol Breed 26(3):409–418CrossRefGoogle Scholar
  84. Reddy PS, Fakrudin B, Punnuri SM, Arun SS, Kuruvinashetti MS, Das IK, Seetharama N (2008) Molecular mapping of genomic regions harboring QTLs for stalk rot resistance in sorghum. Euphytica 159(1-2):191–198CrossRefGoogle Scholar
  85. Reddy BVS, Kumar AA, Sharma HC, Rao SP, Blummel M, Reddy C, Sharma R, Deshpande SP, Mazumdar SD, Dinakaran E (2012) Sorghum improvement (1980–2010): status and way forward. J Semi-Arid Tropics (SAT) Agric Res 10:1–14Google Scholar
  86. Reddy NRR, Ragimasalawada M, Sabbavarapu MM, Nadoor S, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics 15:909Google Scholar
  87. Rezende VF, Vencovsky R, Cárdenas FE, da Silva HP, Bearzoti E, Camargo LE (2004) Mixed inheritance model for resistance to anthracnose leaf blight in maize. Crop Breed Appl Biotechnol 4(1):115–122CrossRefGoogle Scholar
  88. Riyazaddin M, Kishor K, Polavarapu B, Ashok Kumar A, Reddy BV, Munghate RS, Sharma HC (2015) Mechanisms and diversity of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed 134(4):423–436CrossRefGoogle Scholar
  89. Rooney LW (2007) Food and nutritional quality of sorghum and millet. INTSORMIL, NebraskaGoogle Scholar
  90. Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimaraes CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124(8):1389–1402PubMedCrossRefGoogle Scholar
  91. Sajjanar GM (2002) Genetic analysis and molecular mapping of components of resistance to shoot fly (Atherigona soccata) in sorghum (Sorghum bicolor (L.) Moench). Ph.D. thesis, University of Agricultural Sciences, Dharwad, IndiaGoogle Scholar
  92. Sally LD, Frances MS, Robert JH, Giovanni C, Liz I (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100(5):975–989CrossRefGoogle Scholar
  93. Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48(5–6):713–726PubMedCrossRefGoogle Scholar
  94. Satish K, Srinivas G, Madhusudhana R, Padmaja PG, Reddy RN, Mohan SM, Seetharama N (2009) Identification of quantitative trait loci for resistance to shoot fly in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 119(8):1425–1439PubMedCrossRefGoogle Scholar
  95. Sharma HC (1985) Strategies for pest control in sorghum in India. International Journal of Pest Management 31(3):167–185Google Scholar
  96. Sharma HC (1993) Host-plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12(1):11–34CrossRefGoogle Scholar
  97. Sharma HC, Leuschner K, Nwanze KF, Taneja SL (1992) Techniques to screen sorghums for resistance to insect pests. International Crops Research Institute for the Semi-Arid TropicsGoogle Scholar
  98. Sharma HC, Taneja SL, Rao NK, Rao KP (2003) Evaluation of sorghum germplasm for resistance to insect pests. International Crops Research Institute for the Semi-Arid TropicsGoogle Scholar
  99. Sharma HC, Reddy BV, Dhillon MK, Venkateswaran K, Singh BU, Pampapathy G, Folkertsma RT, Hash CT, Sharma KK (2005) Host plant resistance to insects in sorghum: present status and need for future research. Int Sorghum Millets Newsl 46:36–43Google Scholar
  100. Sharma HC (2006) Integrated pest management research at ICRISAT: present status and future priorities. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India 48Google Scholar
  101. Sharma HC, Dhillon MK, Pampapathy G, Reddy BVS (2007) Inheritance of resistance to spotted stem borer, Chilo partellus, in sorghum, Sorghum bicolor. Euphytica 156:117–128CrossRefGoogle Scholar
  102. Singh SD, Bandyopadhyay R (2000) Grain mold. In: Odvody GN (ed) Compendium of Sorghum diseases, 2nd edn. The American Phytopathological Society, APS Press, Frederiksen/St. Paul, pp 38–40Google Scholar
  103. Singh SR, Vedamoorthy G, Thobbi VV, Jotwani MG, Young WR, Balan JS, Srivastava KP, Sandhu GS, Krishnananda N (1968) Resistance to stem borer, Chilozonellus (Swinhoe) and stem fly, Atherigona varia soccata Rond. In the world sorghum collection in India. Mem ent Soc India 7:1–79Google Scholar
  104. Singh M, Chaudhary K, Singal HR, Magill CW, Boora KS (2006) Identification and characterization of RAPD and SCAR markers linked to anthracnose resistance gene in sorghum [Sorghum bicolor (L.) Moench]. Euphytica 149(1–2):179–187CrossRefGoogle Scholar
  105. Singh BU, Rao KV, Sharma HC (2011) Comparison of selection indices to identify sorghum genotypes resistant to the spotted stem borer Chilo partellus (Lepidoptera: Noctuidae). Int J Trop Insect Sci 31(1–2):38–51CrossRefGoogle Scholar
  106. Skelton JL (2014) EMS induced mutations in dhurrin metabolism and their impacts on sorghum growth and development. Doctoral dissertation, Purdue UniversityGoogle Scholar
  107. Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118(4):703–717PubMedCrossRefGoogle Scholar
  108. Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101(5–6):733–741CrossRefGoogle Scholar
  109. Sullivan CY, Blum A (1970) Drought and Pf resistance of sorghum and corn Pages 55-56 Proceedings of the 25th Annual Corn and Sorghl111 Research Conference of the American Seed TrL. Assoclation, WlchltaGoogle Scholar
  110. Sullivan CY, Ross WM (1979) Selecting for drought and heat resistance in grain sorghum. In: Mussell H, Staples RC (eds) Stress physiology in crop plants. Wiley Interscience, New York, pp 263–281Google Scholar
  111. Sullivan CY, Norcio NV, Eastin JD (1977) Plant responses to high temperatures. In: Genetic diversity in plants 1977. Springer, Boston, MA, pp 301–317Google Scholar
  112. Sundaram NV, Palmer LT, Nagarajan K, Prescott JM (1972) Disease survey of sorghum and millets in India. Plant Disease Reporter. 56(9):740–743Google Scholar
  113. Syed AJ, More AW, Kalpande HV (2017) Character association studies in Sorghum [Sorghum bicolor (L.) Moench] Germplasm lines for shoot fly resistance parameters. Int J Curr Microbiol App Sci 6(12):298–302CrossRefGoogle Scholar
  114. Tadele T, Mugo S, Likhayo P, Beyene Y (2011) Resistance of three-way cross experimental maize hybrids to post-harvest insect pests, the larger grain borer (Prostephanus truncatus) and maize weevil (Sitophilus zeamais). Int J Trop Insect Sci 31(1–2):3–12Google Scholar
  115. Taneja SL, Leuschner K (1984) Methods of rearing, infestation, and evaluation for Chilo partellus resistance in sorghum. In: Proceedings of the international sorghum entomology workshop, 21, 175–188Google Scholar
  116. Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, McIntyre CL (2000) Identification of genomic regions associated with stay green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100(8):1225–1232CrossRefGoogle Scholar
  117. Tari G, Laskay Z, Takacs P (2012) Poor responses of Sorghum to abiotic stresses: a review department of plant biology, University of Szeged Szeged, Hungary. J Agro Crop Sci ISSN 0931-2250Google Scholar
  118. Tarr SA (1962) Diseases of sorghum, Sudan grass and broomcorn. The commonwealth mycological institute Kew, surrey. Printed in great Britain at the, vol 380. University Press, OxfordGoogle Scholar
  119. Tende RM, Nderitu JH, Mugo S, Songa JM, Olubayo F, Bergvinson D (2005) Screening for development of resistance by the spotted stem borer, Chilo Partellus Swinhoe (Lepidoptera: Pyralidae) to Bt-maize delta-endotoxins. In: African crop science conference proceedings, vol 7, pp 1241–1244Google Scholar
  120. Teixeira EI, Fischer G, Van Velthuizen H, Walter C, Ewert F (2013) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol 170:206–215CrossRefGoogle Scholar
  121. Thakur RP, Mathur K (2000) Anthracnose. In: Compendium of Sorghum diseases. American Phytopathological Society, St. Paul, pp 10–12Google Scholar
  122. Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L) Moench. Mol Breed 3(6):439–448CrossRefGoogle Scholar
  123. Tuinstra MR, Ejeta G, Goldsbrough P (1998) Evaluation of nearly isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842CrossRefGoogle Scholar
  124. Upadhyaya HD, Gowda CL (2009) Managing and enhancing the use of germplasm–strategies and methodologies. International crops research Institute for the Semi-Arid Tropics, PatancheruGoogle Scholar
  125. Upadhyaya HD, Wang YH, Sharma R, Sharma S (2013) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126(6):1649–1657PubMedCrossRefGoogle Scholar
  126. Upadhyaya HD, Reddy KN, Vetriventhan M, Reddy MT, Singh SK (2018) Sorghum germplasm from west and Central Africa maintained in the ICRISAT genebank: status, gaps, and diversity. The Crop Journal 58:1–12CrossRefGoogle Scholar
  127. USDA (2016) Crop Production Summary 2015.
  128. USDA (United States Department of Agriculture) (2017).
  129. Wang H, Chen G, Zhang H, Liu B, Yang Y, Qin L, Chen E, Guan Y (2014a) Identification of QTLs for salt tolerance at germination and seedling stage of Sorghum bicolor L. Moench. Euphytica 196(1):117–127CrossRefGoogle Scholar
  130. Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG, Jing HC (2014b) SbHKT1; 4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56(3):315–332PubMedCrossRefGoogle Scholar
  131. Wani SP, Chander G (2016) Role of micro and secondary nutrients in achieving food and nutritional security. Adv Plants Agric Res 4(02):01–02Google Scholar
  132. Xu W, Rosenow DT, Nguyen HT (2000a) Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed 119(4):365–367CrossRefGoogle Scholar
  133. Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen HT (2000b) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43(3):461–469PubMedCrossRefGoogle Scholar
  134. Young LW, Wilen RW, Bonham-Smith PC (2004) High temperature stress of Brassica napus during flowering reduces micro-and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J Exp Bot 55(396):485–495PubMedCrossRefGoogle Scholar
  135. Youngquist JB, Bramel-Cox P, Maranville JW (1992) Evaluation of alternative screening criteria for selecting nitrogen-use efficient genotypes in sorghum. Crop Sci 32(6):1310–1313CrossRefGoogle Scholar
  136. Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61(7):1959–1968PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)PatancheruIndia

Personalised recommendations