Advertisement

Introduction

  • Neil David Barrie
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Standard Models of Particle Physics and Cosmology have been highly successful at describing and reproducing the observed dynamics and properties of the Universe, but they are incomplete. Many mysteries regarding the workings of nature are yet to be resolved, for which new physics beyond the standard paradigms is required. Examples of these are the properties of neutrinos, the identity and origin of dark matter and dark energy, the origin of the matter-antimatter asymmetry, the inflationary mechanism, the quantum nature of gravity, the hierarchy problem, and more; each of which are indications that physics beyond the Standard Model exists. In the past few decades, many extensions to the Standard Model have been postulated in an attempt to explain and provide solutions to these problems. Many of these models have tried to solve the various problems of the Standard Model simultaneously. Any such extensions normally have many phenomenological implications, which can allow for the utilisation of a variety of tools to constrain the models. As of yet, none of these extensions have been accepted because they either are ruled out by experimental searches or current experiments are not sensitive enough to exclude their predictions.

References

  1. 1.
    N.D. Barrie, A. Kobakhidze, S. Liang, Natural inflation with hidden scale invariance. Phys. Lett. B 756, 390–393 (2016).  https://doi.org/10.1016/j.physletb.2016.03.056ADSCrossRefGoogle Scholar
  2. 2.
    N.D. Barrie, A. Kobakhidze, Inflationary baryogenesis in a model with gauged baryon number. JHEP 09, 163 (2014).  https://doi.org/10.1007/JHEP09(2014)163ADSCrossRefGoogle Scholar
  3. 3.
    N.D. Barrie, A. Kobakhidze, Generating luminous and dark matter during inflation. Mod. Phys. Lett. A 32(14), 1750087 (2017).  https://doi.org/10.1142/S0217732317500870ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    K. Bamba, N.D. Barrie, A. Sugamoto, T. Takeuchi, K. Yamashita, Ratchet baryogenesis with an analogy to the forced pendulum (2016), arXiv:1610.03268
  5. 5.
    N.D. Barrie, A. Kobakhidze, Gravitational instabilities of the cosmic neutrino background with non-zero lepton number. Phys. Lett. B 772, 459–463 (2017).  https://doi.org/10.1016/j.physletb.2017.07.012ADSCrossRefGoogle Scholar
  6. 6.
    N.D. Barrie, A. Kobakhidze, S. Liang, M. Talia, L. Wu, Heavy Leptonium as the origin of the 750 GeV diphoton excess (2016), arXiv:1604.02803
  7. 7.
    N.D. Barrie, A. Kobakhidze, M. Talia, W. Lei, 750 GeV composite axion as the LHC diphoton resonance. Phys. Lett. B 755, 343–347 (2016).  https://doi.org/10.1016/j.physletb.2016.02.010ADSCrossRefGoogle Scholar
  8. 8.
    N.D. Barrie, A. Sugamoto, K. Yamashita. Construction of a model of monopolium and its search via multiphoton channels at LHC. PTEP, 2016(11), 113B02 (2016).  https://doi.org/10.1093/ptep/ptw155
  9. 9.
    C.-N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).  https://doi.org/10.1103/PhysRev.96.191ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. Utiyama, Invariant theoretical interpretation of interaction. Phys. Rev. 101, 1597–1607 (1956).  https://doi.org/10.1103/PhysRev.101.1597ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    T.D. Lee, C.-N. Yang, Question of parity conservation in weak interactions. Phys. Rev. 104, 254–258 (1956).  https://doi.org/10.1103/PhysRev.104.254ADSCrossRefGoogle Scholar
  12. 12.
    J.S. Schwinger, A theory of the fundamental interactions. Ann. Phys. 2, 407–434 (1957).  https://doi.org/10.1016/0003-4916(57)90015-5ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    C.S. Wu, E. Ambler, R.W. Hayward, D.D. Hoppes, R.P. Hudson, Experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1414 (1957).  https://doi.org/10.1103/PhysRev.105.1413ADSCrossRefGoogle Scholar
  14. 14.
    S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961).  https://doi.org/10.1016/0029-5582(61)90469-2CrossRefGoogle Scholar
  15. 15.
    J. Goldstone, Field theories with superconductor solutions. Nuovo Cim. 19, 154–164 (1961).  https://doi.org/10.1007/BF02812722ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 1. Phys. Rev. 122, 345–358 (1961).  https://doi.org/10.1103/PhysRev.122.345
  17. 17.
    Y. Nambu, G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. 2. Phys. Rev. 124, 246–254 (1961).  https://doi.org/10.1103/PhysRev.124.246
  18. 18.
    J. Goldstone, A. Salam, S. Weinberg, Broken symmetries. Phys. Rev. 127, 965–970 (1962).  https://doi.org/10.1103/PhysRev.127.965ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962).  https://doi.org/10.1143/PTP.28.870ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067–1084 (1962).  https://doi.org/10.1103/PhysRev.125.1067ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P.W. Anderson, Plasmons, gauge invariance, and mass. Phys. Rev. 130, 439–442 (1963).  https://doi.org/10.1103/PhysRev.130.439ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    N. Cabibbo, Unitary symmetry and leptonic decays. Phys. Rev. Lett. 10, 531–533 (1963).  https://doi.org/10.1103/PhysRevLett.10.531ADSCrossRefGoogle Scholar
  23. 23.
    G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, in Developments in the Quark Theory of Hadrons. 1964–1978, vol. 1, ed. by D. Lichtenberg, S. Rosen (1964), pp. 22–101Google Scholar
  24. 24.
    M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214–215 (1964).  https://doi.org/10.1016/S0031-9163(64)92001-3ADSCrossRefGoogle Scholar
  25. 25.
    G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964).  https://doi.org/10.1103/PhysRevLett.13.585ADSCrossRefGoogle Scholar
  26. 26.
    A. Salam, J. Clive Ward, Electromagnetic and weak interactions. Phys. Lett. 13, 168–171 (1964).  https://doi.org/10.1016/0031-9163(64)90711-5
  27. 27.
    T.W.B. Kibble, Symmetry breaking in nonAbelian gauge theories. Phys. Rev. 155, 1554–1561 (1967).  https://doi.org/10.1103/PhysRev.155.1554ADSCrossRefGoogle Scholar
  28. 28.
    S.R. Coleman, J. Mandula, All possible symmetries of the S matrix. Phys. Rev. 159, 1251–1256 (1967).  https://doi.org/10.1103/PhysRev.159.1251
  29. 29.
    S. Weinberg, A model of leptons. Phys. Rev. Lett. 19, 1264–1266 (1967).  https://doi.org/10.1103/PhysRevLett.19.1264ADSCrossRefGoogle Scholar
  30. 30.
    A. Salam, Weak and electromagnetic interactions, in Conference Proceeding, vol. C680519 (1968), pp. 367–377Google Scholar
  31. 31.
    K.G. Wilson, The renormalization group and strong interactions. Phys. Rev. D 3, 1818 (1971).  https://doi.org/10.1103/PhysRevD.3.1818ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    S.L. Glashow, J. Iliopoulos, L. Maiani, Weak interactions with lepton-hadron symmetry. Phys. Rev. D 2, 1285–1292 (1970).  https://doi.org/10.1103/PhysRevD.2.1285ADSCrossRefGoogle Scholar
  33. 33.
    C. Bouchiat, J. Iliopoulos, P. Meyer, An anomaly free version of weinberg’s model. Phys. Lett. B 38, 519–523 (1972).  https://doi.org/10.1016/0370-2693(72)90532-1ADSCrossRefGoogle Scholar
  34. 34.
    S. Weinberg, Effects of a neutral intermediate boson in semileptonic processes. Phys. Rev. D 5, 1412–1417 (1972).  https://doi.org/10.1103/PhysRevD.5.1412ADSCrossRefGoogle Scholar
  35. 35.
    C.G. Bollini, J.J. Giambiagi, Dimensional renormalization: the number of dimensions as a regularizing parameter. Nuovo Cim. B 12, 20–26 (1972).  https://doi.org/10.1007/BF02895558CrossRefGoogle Scholar
  36. 36.
    G. Hooft, M.J.G. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44, 189–213 (1972).  https://doi.org/10.1016/0550-3213(72)90279-9
  37. 37.
    K.G. Wilson, J.B. Kogut, The renormalization group and the epsilon expansion. Phys. Rept. 12, 75–200 (1974).  https://doi.org/10.1016/0370-1573(74)90023-4
  38. 38.
    M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction. Prog. Theor. Phys. 49, 652–657 (1973).  https://doi.org/10.1143/PTP.49.652ADSCrossRefGoogle Scholar
  39. 39.
    Jogesh C. Pati, Abdus Salam, Lepton Number as the Fourth Color. Phys. Rev. D 10, 275–289 (1974).  https://doi.org/10.1103/PhysRevD.10.275,  https://doi.org/10.1103/PhysRevD.11.703.2. [Erratum: Phys. Rev. D11, 703 (1975)]
  40. 40.
    J. Iliopoulos, The making of the standard theory. Adv. Ser. Direct. High Energy Phys. 26, 29–59 (2016).  https://doi.org/10.1142/9789814733519_0002CrossRefzbMATHGoogle Scholar
  41. 41.
    K.A. Olive et al., Review of particle physics. Chin. Phys. C 38, 090001 (2014).  https://doi.org/10.1088/1674-1137/38/9/090001ADSCrossRefGoogle Scholar
  42. 42.
    P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964).  https://doi.org/10.1103/PhysRevLett.13.508ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    P.W. Higgs, Broken symmetries, massless particles and gauge fields. Phys. Lett. 12, 132–133 (1964).  https://doi.org/10.1016/0031-9163(64)91136-9ADSCrossRefGoogle Scholar
  44. 44.
    F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964).  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    P.W. Higgs, Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966).  https://doi.org/10.1103/PhysRev.145.1156ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    L. Evans, P. Bryant, LHC machine. JINST 3, S08001 (2008).  https://doi.org/10.1088/1748-0221/3/08/S08001ADSCrossRefGoogle Scholar
  47. 47.
    G. Aad et al., The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008).  https://doi.org/10.1088/1748-0221/3/08/S08003ADSCrossRefGoogle Scholar
  48. 48.
    G. Aad et al., Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).  https://doi.org/10.1016/j.physletb.2012.08.020ADSCrossRefGoogle Scholar
  49. 49.
    S. Chatrchyan et al., The CMS experiment at the CERN LHC. JINST 3, S08004 (2008).  https://doi.org/10.1088/1748-0221/3/08/S08004CrossRefGoogle Scholar
  50. 50.
    S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012).  https://doi.org/10.1016/j.physletb.2012.08.021ADSCrossRefGoogle Scholar
  51. 51.
    S. Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations (Cambridge University Press, 2005). ISBN 9780521670531, 9780511252044Google Scholar
  52. 52.
    S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications (Cambridge University Press, 2013). ISBN 9781139632478, 9780521670548, 9780521550024Google Scholar
  53. 53.
    L.H. Ryder. Quantum Field Theory (Cambridge University Press, 1996). ISBN 9780521478144, 9781139632393, 9780521237642Google Scholar
  54. 54.
    M.D. Schwartz Quantum Field Theory and the Standard Model (Cambridge University Press, 2014). ISBN 1107034736, 9781107034730Google Scholar
  55. 55.
    W.N. Cottingham, D.A. Greenwood, An Introduction to the Standard Model of Particle Physics (Cambridge University Press, 2007). ISBN 9780511271366, 9780521852494Google Scholar
  56. 56.
    T. Morii, C.S. Lim, S.N. Mukherjee, The Physics of the Standard Model and Beyond (World Scientific, River Edge, USA, 2004)CrossRefGoogle Scholar
  57. 57.
    E. Leader, E. Predazzi, An Introduction to gauge theories and modern particle physics. Vol. 2: CP violation, QCD and hard processes. Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 4, 1–464 (1996)zbMATHGoogle Scholar
  58. 58.
    E. Leader, E. Predazzi, An Introduction to Gauge Theories and Modern Particle Physics. Vol. 1: Electroweak Interactions, the New Particles and the Parton Model (Cambridge University Press, 2011). ISBN 9780511885730, 9780521468404Google Scholar
  59. 59.
    S.R. Coleman, E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7, 1888–1910 (1973).  https://doi.org/10.1103/PhysRevD.7.1888ADSCrossRefGoogle Scholar
  60. 60.
    S. Weinberg, Implications of dynamical symmetry breaking. Phys. Rev. D 13, 974–996 (1976).  https://doi.org/10.1103/PhysRevD.13.974ADSCrossRefGoogle Scholar
  61. 61.
    L. Susskind, Dynamics of spontaneous symmetry breaking in the weinberg-salam theory. Phys. Rev. D 20, 2619–2625 (1979).  https://doi.org/10.1103/PhysRevD.20.2619ADSCrossRefGoogle Scholar
  62. 62.
    S. Weinberg, Implications of dynamical symmetry breaking: an addendum. Phys. Rev. D 19, 1277–1280 (1979).  https://doi.org/10.1103/PhysRevD.19.1277ADSCrossRefGoogle Scholar
  63. 63.
    D.A. Kirzhnits, D. Andrei, Linde. macroscopic consequences of the weinberg model. Phys. Lett. B 42, 471–474 (1972).  https://doi.org/10.1016/0370-2693(72)90109-8ADSCrossRefGoogle Scholar
  64. 64.
    L. Dolan, R. Jackiw, Symmetry behavior at finite temperature. Phys. Rev. D 9, 3320–3341 (1974).  https://doi.org/10.1103/PhysRevD.9.3320ADSCrossRefGoogle Scholar
  65. 65.
    S. Weinberg, Gauge and global symmetries at high temperature. Phys. Rev. D 9, 3357–3378 (1974).  https://doi.org/10.1103/PhysRevD.9.3357ADSCrossRefGoogle Scholar
  66. 66.
    R.D. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440–1443 (1977).  https://doi.org/10.1103/PhysRevLett.38.1440
  67. 67.
    M. Lindner, Implications of triviality for the standard model. Z. Phys. C 31, 295 (1986).  https://doi.org/10.1007/BF01479540ADSCrossRefGoogle Scholar
  68. 68.
    E. Noether, Invariant variation problems. Transp. Theory Stat. Phys. 1, 186–207 (1971).  https://doi.org/10.1080/00411457108231446ADSMathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    S. Rajpoot, Gauge symmetries of electroweak interactions. Int. J. Theor. Phys. 27, 689 (1988).  https://doi.org/10.1007/BF00669312CrossRefGoogle Scholar
  70. 70.
    S.L. Adler, Axial vector vertex in spinor electrodynamics. Phys. Rev. 177, 2426–2438 (1969).  https://doi.org/10.1103/PhysRev.177.2426ADSCrossRefGoogle Scholar
  71. 71.
    J.S. Bell, R. Jackiw, A PCAC puzzle: pi0 gt; gamma gamma in the sigma model. Nuovo Cim. A 60, 47–61 (1969).  https://doi.org/10.1007/BF02823296ADSCrossRefGoogle Scholar
  72. 72.
    G. Hooft, Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett. 37, 8–11 (1976).  https://doi.org/10.1103/PhysRevLett.37.8
  73. 73.
    J. Preskill, Gauge anomalies in an effective field theory. Ann. Phys. 210, 323–379 (1991).  https://doi.org/10.1016/0003-4916(91)90046-BADSMathSciNetCrossRefGoogle Scholar
  74. 74.
    M.B. Green, J.H. Schwarz, Anomaly cancellation in supersymmetric D = 10 gauge theory and superstring theory. Phys. Lett. B 149, 117–122 (1984).  https://doi.org/10.1016/0370-2693(84)91565-XADSMathSciNetCrossRefGoogle Scholar
  75. 75.
    P.F. Perez, T. Han, T. Li, M.J. Ramsey-Musolf, Leptoquarks and neutrino masses at the LHC. Nucl. Phys. B 819, 139–176 (2009).  https://doi.org/10.1016/j.nuclphysb.2009.04.009
  76. 76.
    P.V. Dong, H.N. Long, A simple model of gauged lepton and baryon charges. Phys. Int. 6(1), 23–32 (2010).  https://doi.org/10.3844/pisp.2015.23.32
  77. 77.
    M. Duerr, P.F. Perez, M.B. Wise, Gauge theory for baryon and lepton numbers with Leptoquarks. Phys. Rev. Lett. 110, 231801 (2013).  https://doi.org/10.1103/PhysRevLett.110.231801
  78. 78.
    E.C.G. Stueckelberg, Interaction energy in electrodynamics and in the field theory of nuclear forces. Helv. Phys. Acta 11, 225–244 (1938).  https://doi.org/10.5169/seals-110852CrossRefGoogle Scholar
  79. 79.
    S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). ISBN 0471925675, 9780471925675Google Scholar
  80. 80.
    S. Dodelson, Modern Cosmology (Academic Press, Amsterdam, 2003). ISBN 9780122191411Google Scholar
  81. 81.
    M. Trodden, S.M. Carroll, TASI lectures: introduction to cosmology, in Progress in String Theory. Proceedings, Summer School, TASI 2003, Boulder, USA, June 2–27, 2003 (2004), pp. 703–793Google Scholar
  82. 82.
    V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Oxford, 2005). ISBN 0521563984, 9780521563987Google Scholar
  83. 83.
    A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080-Mc/s. Astrophys. J. 142, 419–421 (1965).  https://doi.org/10.1086/148307
  84. 84.
    J.C. Mather et al., A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. Astrophys. J. 354, L37–L40 (1990).  https://doi.org/10.1086/185717ADSCrossRefGoogle Scholar
  85. 85.
    G.F. Smoot et al., Structure in the COBE differential microwave radiometer first year maps. Astrophys. J. 396, L1–L5 (1992).  https://doi.org/10.1086/186504ADSCrossRefGoogle Scholar
  86. 86.
    D.N. Spergel et al., First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003).  https://doi.org/10.1086/377226ADSCrossRefGoogle Scholar
  87. 87.
    D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007).  https://doi.org/10.1086/513700ADSCrossRefGoogle Scholar
  88. 88.
    E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 180, 330–376 (2009).  https://doi.org/10.1088/0067-0049/180/2/330ADSCrossRefGoogle Scholar
  89. 89.
    E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011).  https://doi.org/10.1088/0067-0049/192/2/18ADSCrossRefGoogle Scholar
  90. 90.
    C.L. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. 208, 20 (2013).  https://doi.org/10.1088/0067-0049/208/2/20ADSCrossRefGoogle Scholar
  91. 91.
    G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013).  https://doi.org/10.1088/0067-0049/208/2/19ADSCrossRefGoogle Scholar
  92. 92.
    P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014).  https://doi.org/10.1051/0004-6361/201321529
  93. 93.
    R. Adam et al., Planck 2015 results. I. Overview of products and scientific results. Astron. Astrophys. 594, A1 (2016).  https://doi.org/10.1051/0004-6361/201527101
  94. 94.
    P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014a).  https://doi.org/10.1051/0004-6361/201321529
  95. 95.
    J.B. Hartle, An Introduction to Einstein’s General Relativity (Addison-Wesley, San Francisco, USA, 2003)Google Scholar
  96. 96.
    E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168–173 (1929).  https://doi.org/10.1073/pnas.15.3.168ADSCrossRefzbMATHGoogle Scholar
  97. 97.
    G. Gamow, Expanding universe and the origin of elements. Phys. Rev. 70, 572–573 (1946).  https://doi.org/10.1103/PhysRev7.0.572ADSCrossRefGoogle Scholar
  98. 98.
    R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803–804 (1948).  https://doi.org/10.1103/PhysRev.73.803ADSCrossRefGoogle Scholar
  99. 99.
    R.V. Wagoner, W.A. Fowler, F. Hoyle, On the synthesis of elements at very high temperatures. Astrophys. J. 148, 3–49 (1967).  https://doi.org/10.1086/149126ADSCrossRefGoogle Scholar
  100. 100.
    D.N. Schramm, R.V. Wagoner, Element production in the early universe. Ann. Rev. Nucl. Part. Sci. 27, 37–74 (1977).  https://doi.org/10.1146/annurev.ns.27.120177.000345ADSCrossRefGoogle Scholar
  101. 101.
    J.-M. Yang, M.S. Turner, G. Steigman, D.N. Schramm, K.A. Olive, Primordial nucleosynthesis: a critical comparison of theory and observation. Astrophys. J. 281, 493–511 (1984).  https://doi.org/10.1086/162123
  102. 102.
    A. Merchant Boesgaard , G. Steigman, Big bang nucleosynthesis: theories and observations. Ann. Rev. Astron. Astrophys. 23, 319–378 (1985).  https://doi.org/10.1146/annurev.aa.23.090185.001535
  103. 103.
    C.J. Copi, D.N. Schramm, M.S. Turner, Big bang nucleosynthesis and the baryon density of the universe. Science 267, 192–199 (1995).  https://doi.org/10.1126/science.7809624ADSCrossRefGoogle Scholar
  104. 104.
    G. Steigman, Primordial nucleosynthesis in the precision cosmology era. Ann. Rev. Nucl. Part. Sci. 57, 463–491 (2007).  https://doi.org/10.1146/annurev.nucl.56.080805.140437ADSCrossRefGoogle Scholar
  105. 105.
    F. Iocco, G. Mangano, G. Miele, O. Pisanti, P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics. Phys. Rept. 472, 1–76 (2009).  https://doi.org/10.1016/j.physrep.2009.02.002ADSCrossRefGoogle Scholar
  106. 106.
    R.H. Cyburt, B.D. Fields, K.A. Olive, An update on the big bang nucleosynthesis prediction for Li-7: the problem worsens. JCAP 0811, 012 (2008).  https://doi.org/10.1088/1475-7516/2008/11/012ADSCrossRefGoogle Scholar
  107. 107.
    R.H. Cyburt, B.D. Fields, K.A. Olive, T.-H. Yeh, Big bang nucleosynthesis: 2015. Rev. Mod. Phys. 88, 015004 (2016).  https://doi.org/10.1103/RevModPhys.88.015004ADSCrossRefGoogle Scholar
  108. 108.
    D. Baumann, On the quantum origin of structure in the inflationary universe (2007). http://inspirehep.net/record/827549
  109. 109.
    A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981).  https://doi.org/10.1103/PhysRevD.23.347
  110. 110.
    A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980).  https://doi.org/10.1016/0370-2693(80)90670-X
  111. 111.
    D. Kazanas, Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. 241, L59–L63 (1980).  https://doi.org/10.1086/183361
  112. 112.
    K. Sato, First order phase transition of a vacuum and expansion of the universe. Mon. Not. Roy. Astron. Soc. 195, 467–479 (1981)Google Scholar
  113. 113.
    A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982).  https://doi.org/10.1016/0370-2693(82)91219-9
  114. 114.
    A.D. Linde, Coleman-weinberg theory and a new inflationary universe scenario. Phys. Lett. B 114, 431–435 (1982).  https://doi.org/10.1016/0370-2693(82)90086-7
  115. 115.
    A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982).  https://doi.org/10.1103/PhysRevLett.48.1220
  116. 116.
    A.H. Guth, S.Y. Pi, Fluctuations in the new inflationary universe. Phys. Rev. Lett. 49, 1110–1113 (1982).  https://doi.org/10.1103/PhysRevLett.49.1110
  117. 117.
    M.S. Turner, Coherent scalar field oscillations in an expanding universe. Phys. Rev. D 28, 1243 (1983).  https://doi.org/10.1103/PhysRevD.28.1243
  118. 118.
    J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys. Rev. D 28, 679 (1983).  https://doi.org/10.1103/PhysRevD.28.679
  119. 119.
    A.D. Linde, The inflationary universe. Rept. Prog. Phys. 47, 925–986 (1984).  https://doi.org/10.1088/0034-4885/47/8/002
  120. 120.
    R.H. Brandenberger, Quantum field theory methods and inflationary universe models. Rev. Mod. Phys. 57, 1 (1985).  https://doi.org/10.1103/RevModPhys.57.1
  121. 121.
    A.D. Linde, Eternal chaotic inflation. Mod. Phys. Lett. A 1, 81 (1986).  https://doi.org/10.1142/S0217732386000129
  122. 122.
    D. Baumann, Inflation, in Physics of the Large and the Small, TASI 2009, Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1–26 June 2009 (2011), pp. 523–686.  https://doi.org/10.1142/9789814327183_0010
  123. 123.
    G. Hooft, Magnetic monopoles in unified gauge theories. Nucl. Phys. B 79, 276–284 (1974).  https://doi.org/10.1016/0550-3213(74)90486-6
  124. 124.
    Y.B. Zeldovich, M.Y. Khlopov, On the concentration of relic magnetic monopoles in the universe. Phys. Lett. B 79, 239–241 (1978).  https://doi.org/10.1016/0370-2693(78)90232-0ADSCrossRefGoogle Scholar
  125. 125.
    J. Preskill, Cosmological production of superheavy magnetic monopoles. Phys. Rev. Lett. 43, 1365 (1979).  https://doi.org/10.1103/PhysRevLett.43.1365ADSCrossRefGoogle Scholar
  126. 126.
    V.F. Mukhanov, G.V. Chibisov, Quantum fluctuations and a nonsingular universe. JETP Lett. 33, 532–535 (1981). [Pisma Zh. Eksp. Teor. Fiz.33,549(1981)]Google Scholar
  127. 127.
    K.A. Olive, Inflation. Phys. Rept. 190, 307–403 (1990).  https://doi.org/10.1016/0370-1573(90)90144-Q
  128. 128.
    E.W. Kolb, M.S. Turner, The early universe. Front. Phys. 69, 1–547 (1990)Google Scholar
  129. 129.
    A. Riotto, Inflation and the theory of cosmological perturbations, in Astroparticle Physics and Cosmology. Proceedings: Summer School, Trieste, Italy, Jun 17–Jul 5 2002 (2002), pp. 317–413Google Scholar
  130. 130.
    R.H. Brandenberger, Lectures on the theory of cosmological perturbations. Lect. Notes Phys. 646, 127–167 (2004)Google Scholar
  131. 131.
    A.D. Linde, Particle physics and inflationary cosmology. Contemp. Concepts Phys. 5, 1–362 (1990)Google Scholar
  132. 132.
    K.A. Malik, D. Wands, Cosmological perturbations. Phys. Rept. 475, 1–51 (2009).  https://doi.org/10.1016/j.physrep.2009.03.001
  133. 133.
    R.H. Brandenberger, Alternatives to the inflationary paradigm of structure formation. Int. J. Mod. Phys. Conf. Ser. 01, 67–79 (2011).  https://doi.org/10.1142/S2010194511000109CrossRefGoogle Scholar
  134. 134.
    R.H. Brandenberger, Cosmology of the very early universe. AIP Conf. Proc. 1268, 3–70 (2010).  https://doi.org/10.1063/1.3483879ADSCrossRefGoogle Scholar
  135. 135.
    R.H. Brandenberger, Unconventional cosmology. Lect. Notes Phys. 863, 333 (2013).  https://doi.org/10.1007/978-3-642-33036-0_12
  136. 136.
    F. Lucchin, S. Matarrese, Power law inflation. Phys. Rev. D 32, 1316 (1985).  https://doi.org/10.1103/PhysRevD.32.1316
  137. 137.
    K. Freese, J.A. Frieman, A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons. Phys. Rev. Lett. 65, 3233–3236 (1990).  https://doi.org/10.1103/PhysRevLett.65.3233
  138. 138.
    J.D. Barrow, K. Maeda, Extended inflationary universes. Nucl. Phys. B 341, 294–308 (1990).  https://doi.org/10.1016/0550-3213(90)90272-F
  139. 139.
    A.L. Berkin, K.-I. Maeda, Inflation in generalized Einstein theories. Phys. Rev. D 44, 1691–1704 (1991).  https://doi.org/10.1103/PhysRevD.44.1691
  140. 140.
    A.D. Linde, Axions in inflationary cosmology. Phys. Lett. B 259, 38–47 (1991).  https://doi.org/10.1016/0370-2693(91)90130-I
  141. 141.
    L.F. Abbott, E. Farhi, M.B. Wise, Particle production in the new inflationary cosmology. Phys. Lett. B117, 29 (1982).  https://doi.org/10.1016/0370-2693(82)90867-X
  142. 142.
    S.W. Hawking, The development of irregularities in a single bubble inflationary universe. Phys. Lett. B 115, 295 (1982).  https://doi.org/10.1016/0370-2693(82)90373-2
  143. 143.
    A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 117, 175–178 (1982).  https://doi.org/10.1016/0370-2693(82)90541-X
  144. 144.
    F.C. Adams, J. Richard Bond, K. Freese, J.A. Frieman, A.V. Olinto, Natural inflation: particle physics models, power law spectra for large scale structure, and constraints from COBE. Phys. Rev. D 47, 426–455 (1993).  https://doi.org/10.1103/PhysRevD.47.426
  145. 145.
    D.A. Linde, Chaotic inflation. Phys. Lett. B 129, 177–181 (1983).  https://doi.org/10.1016/0370-2693(83)90837-7
  146. 146.
    A.D. Linde, Hybrid inflation. Phys. Rev. D 49, 748–754 (1994).  https://doi.org/10.1103/PhysRevD.49.748
  147. 147.
    E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands, False vacuum inflation with Einstein gravity. Phys. Rev. D 49, 6410–6433 (1994).  https://doi.org/10.1103/PhysRevD.49.6410
  148. 148.
    A. Berera, Warm inflation. Phys. Rev. Lett. 75, 3218–3221 (1995).  https://doi.org/10.1103/PhysRevLett.75.3218
  149. 149.
    P. Binetruy, G.R. Dvali, D term inflation. Phys. Lett. B 388, 241–246 (1996).  https://doi.org/10.1016/S0370-2693(96)01083-0
  150. 150.
    G.R. Dvali, S.H. Henry Tye, Brane inflation. Phys. Lett. B 450, 72–82 (1999).  https://doi.org/10.1016/S0370-2693(99)00132-X
  151. 151.
    D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rept. 314, 1–146 (1999).  https://doi.org/10.1016/S0370-1573(98)00128-8
  152. 152.
    A.R. Liddle, A. Mazumdar, F.E. Schunck, Assisted inflation. Phys. Rev. D 58, 061301 (1998).  https://doi.org/10.1103/PhysRevD.58.061301
  153. 153.
    C. Armendariz-Picon, T. Damour, V.F. Mukhanov. k-inflation. Phys. Lett. B 458, 209–218 (1999).  https://doi.org/10.1016/S0370-2693(99)00603-6
  154. 154.
    A. Mazumdar, Extra dimensions and inflation. Phys. Lett. B 469, 55–60 (1999).  https://doi.org/10.1016/S0370-2693(99)01256-3
  155. 155.
    L. Boubekeur, D.H. Lyth, Hilltop inflation. JCAP 0507, 010 (2005).  https://doi.org/10.1088/1475-7516/2005/07/010
  156. 156.
    S. Dimopoulos, S. Kachru, J. McGreevy, J.G. Wacker, N-flation. JCAP 0808, 003 (2008).  https://doi.org/10.1088/1475-7516/2008/08/003
  157. 157.
    J. Martin, C. Ringeval, V. Vennin, Encyclopædia Inflationaris. Phys. Dark Univ. 5–6, 75–235 (2014).  https://doi.org/10.1016/j.dark.2014.01.003CrossRefGoogle Scholar
  158. 158.
    L.F. Abbott, M.B. Wise, Constraints on generalized inflationary cosmologies. Nucl. Phys. B 244, 541–548 (1984).  https://doi.org/10.1016/0550-3213(84)90329-8
  159. 159.
    F.C. Adams, K. Freese, A.H. Guth, Constraints on the scalar field potential in inflationary models. Phys. Rev. D 43, 965–976 (1991).  https://doi.org/10.1103/PhysRevD.43.965
  160. 160.
    D.H. Lyth, What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys. Rev. Lett. 78, 1861–1863 (1997).  https://doi.org/10.1103/PhysRevLett.78.1861
  161. 161.
    D.N. Spergel, M. Zaldarriaga, CMB polarization as a direct test of inflation. Phys. Rev. Lett. 79, 2180–2183 (1997).  https://doi.org/10.1103/PhysRevLett.79.2180
  162. 162.
    A.R. Liddle, S.M. Leach, How long before the end of inflation were observable perturbations produced? Phys. Rev. D 68, 103503 (2003).  https://doi.org/10.1103/PhysRevD.68.103503
  163. 163.
    L. Alabidi, D.H. Lyth, Inflation models and observation. JCAP 0605, 016 (2006).  https://doi.org/10.1088/1475-7516/2006/05/016
  164. 164.
    J.L. Cook, L. Sorbo, Particle production during inflation and gravitational waves detectable by ground-based interferometers. Phys. Rev. D 85, 023534 (2012).  https://doi.org/10.1103/PhysRevD.86.069901,  https://doi.org/10.1103/PhysRevD.85.023534. [Erratum: Phys. Rev. D86, 069901 (2012)]
  165. 165.
    D.H. Lyth, The CMB modulation from inflation. JCAP 1308, 007 (2013).  https://doi.org/10.1088/1475-7516/2013/08/007
  166. 166.
    J. Martin, C. Ringeval, R. Trotta, V. Vennin, The best inflationary models after planck. JCAP 1403, 039 (2014).  https://doi.org/10.1088/1475-7516/2014/03/039
  167. 167.
    D. Roest, Universality classes of inflation. JCAP 1401, 007 (2014).  https://doi.org/10.1088/1475-7516/2014/01/007
  168. 168.
    M. Galante, R. Kallosh, A. Linde, D. Roest, Unity of cosmological inflation attractors. Phys. Rev. Lett. 114(14), 141302 (2015).  https://doi.org/10.1103/PhysRevLett.114.141302
  169. 169.
    P. Binetruy, E. Kiritsis, J. Mabillard, M. Pieroni, C. Rosset, Universality classes for models of inflation. JCAP 1504(04), 033 (2015).  https://doi.org/10.1088/1475-7516/2015/04/033
  170. 170.
    V. Domcke, M. Pieroni, P. Binétruy, Primordial gravitational waves for universality classes of pseudoscalar inflation. JCAP 1606, 031 (2016).  https://doi.org/10.1088/1475-7516/2016/06/031
  171. 171.
    H.-Y. Chiu, Symmetry between particle and anti-particle populations in the universe. Phys. Rev. Lett. 17, 712 (1966).  https://doi.org/10.1103/PhysRevLett.17.712ADSCrossRefGoogle Scholar
  172. 172.
    G. Steigman, Observational tests of antimatter cosmologies. Ann. Rev. Astron. Astrophys. 14, 339–372 (1976).  https://doi.org/10.1146/annurev.aa.14.090176.002011ADSCrossRefGoogle Scholar
  173. 173.
    A.Y. Ignatiev, N.V. Krasnikov, V.A. Kuzmin, A.N. Tavkhelidze, Universal CP noninvariant superweak interaction and baryon asymmetry of the universe. Phys. Lett. B 76, 436–438 (1978).  https://doi.org/10.1016/0370-2693(78)90900-0ADSCrossRefGoogle Scholar
  174. 174.
    D. Toussaint, S.B. Treiman, F. Wilczek, A. Zee, Matter-antimatter accounting, thermodynamics, and black hole radiation. Phys. Rev. D 19, 1036–1045 (1979).  https://doi.org/10.1103/PhysRevD.19.1036
  175. 175.
    S. Dimopoulos, L. Susskind, On the baryon number of the universe. Phys. Rev. D 18, 4500–4509 (1978).  https://doi.org/10.1103/PhysRevD.18.4500ADSCrossRefGoogle Scholar
  176. 176.
    M. Yoshimura, Origin of cosmological baryon asymmetry. Phys. Lett. B 88, 294–298 (1979).  https://doi.org/10.1016/0370-2693(79)90471-4ADSCrossRefGoogle Scholar
  177. 177.
    S. Weinberg, Cosmological production of baryons. Phys. Rev. Lett. 42, 850–853 (1979).  https://doi.org/10.1103/PhysRevLett.42.850ADSCrossRefGoogle Scholar
  178. 178.
    E.W. Kolb, S. Wolfram, Baryon number generation in the early universe. Nucl. Phys. B 172, 224 (1980).  https://doi.org/10.1016/0550-3213(80)90167-4,  https://doi.org/10.1016/0550-3213(82)90012-8. [Erratum: Nucl. Phys. B195, 542 (1982)]
  179. 179.
    A.D. Dolgov, Y.B. Zeldovich, Cosmology and elementary particles. Rev. Mod. Phys. 53, 1–41 (1981).  https://doi.org/10.1103/RevModPhys.53.1ADSMathSciNetCrossRefGoogle Scholar
  180. 180.
    A.D. Dolgov, NonGUT baryogenesis. Phys. Rept. 222, 309–386 (1992).  https://doi.org/10.1016/0370-1573(92)90107-BADSCrossRefGoogle Scholar
  181. 181.
    W. Buchmuller, T. Yanagida, Baryogenesis and the scale of B-L breaking. Phys. Lett. B 302, 240–244 (1993).  https://doi.org/10.1016/0370-2693(93)90391-TADSCrossRefGoogle Scholar
  182. 182.
    W. Buchmuller, T. Yanagida, Quark lepton mass hierarchies and the baryon asymmetry. Phys. Lett. B 445, 399–402 (1999).  https://doi.org/10.1016/S0370-2693(98)01480-4ADSCrossRefGoogle Scholar
  183. 183.
    W. Buchmuller, Some aspects of baryogenesis and lepton number violation, in Recent Developments in Particle Physics and Cosmology: Proceedings. NATO ASI 2000. Cascais, Portugal, July 26–Jul 7, 2000 (2000), pp. 281–314Google Scholar
  184. 184.
    W. Buchmuller, P. Di Bari, M. Plumacher, Cosmic microwave background, matter-antimatter asymmetry and neutrino masses. Nucl. Phys. B 643, 367–390 (2002).  https://doi.org/10.1016/S0550-3213(02)00737-X,  https://doi.org/10.1016/j.nuclphysb.2007.11.030. [Erratum: Nucl. Phys. B793, 362 (2008)]
  185. 185.
    P.A.M. Dirac, A theory of electrons and protons. Proc. Roy. Soc. Lond. A 126, 360 (1930).  https://doi.org/10.1098/rspa.1930.0013ADSCrossRefzbMATHGoogle Scholar
  186. 186.
    J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Evidence for the 2 pi Decay of the k(2)0 Meson. Phys. Rev. Lett. 13, 138–140 (1964).  https://doi.org/10.1103/PhysRevLett.13.138ADSCrossRefGoogle Scholar
  187. 187.
    G. D’Ambrosio, G. Isidori, CP violation in kaon decays. Int. J. Mod. Phys. A 13, 1–94 (1998).  https://doi.org/10.1142/S0217751X98000020ADSCrossRefGoogle Scholar
  188. 188.
    R. Aaij et al., Evidence for CP violation in time-integrated \(D^0 \rightarrow h^-h^+\) decay rates. Phys. Rev. Lett. 108, 111602 (2012).  https://doi.org/10.1103/PhysRevLett.108.129903,  https://doi.org/10.1103/PhysRevLett.108.111602
  189. 189.
    R. Aaij et al., First observation of \(CP\) violation in the decays of \(B^0_s\) mesons. Phys. Rev. Lett. 110, 221601 (2013).  https://doi.org/10.1103/PhysRevLett.110.221601
  190. 190.
    G. Borissov, R. Fleischer, M.-H. Schune, Rare decays and CP violation in the bs system. Annu. Rev. Nucl. Part. Sci. 63(1), null (2013).  https://doi.org/10.1146/annurev-nucl-102912-144527
  191. 191.
    S.P. Ahlen, S. Barwick, J.J. Beatty, C.R. Bower, G. Gerbier et al., New limit on the low-energy anti-proton / proton ratio in the galactic cosmic radiation. Phys. Rev. Lett. 61, 145–148 (1988).  https://doi.org/10.1103/PhysRevLett.61.145ADSCrossRefGoogle Scholar
  192. 192.
    J. Alcaraz et al., Search for anti-helium in cosmic rays. Phys. Lett. B 461, 387–396 (1999).  https://doi.org/10.1016/S0370-2693(99)00874-6ADSCrossRefGoogle Scholar
  193. 193.
    P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).  https://doi.org/10.1051/0004-6361/201525830
  194. 194.
    J. Beringer et al., Review of particle physics (RPP). Phys. Rev. D 86, 010001 (2012).  https://doi.org/10.1103/PhysRevD.86.010001ADSCrossRefGoogle Scholar
  195. 195.
    V. Simha, G. Steigman, Constraining the early-universe baryon density and expansion rate. JCAP 0806, 016 (2008).  https://doi.org/10.1088/1475-7516/2008/06/016ADSCrossRefGoogle Scholar
  196. 196.
    G. Steigman, Primordial nucleosynthesis: the predicted and observed abundances and their consequences. PoS NICXI, 001 (2010)Google Scholar
  197. 197.
    B.D. Fields, P. Molaro, S. Sarkar, Big-bang nucleosynthesis. Chin. Phys. C 38, 339–344 (2014)Google Scholar
  198. 198.
    F.W. Stecker, D.L. Morgan, J. Bredekamp, Possible evidence for the existence of antimatter on a cosmological scale in the universe. Phys. Rev. Lett. 27, 1469–1472 (1971).  https://doi.org/10.1103/PhysRevLett.27.1469ADSCrossRefGoogle Scholar
  199. 199.
    S. Dodelson, L.M. Widrow, Baryogenesis in a baryon symmetric universe. Phys. Rev. D 42, 326–342 (1990).  https://doi.org/10.1103/PhysRevD.42.326ADSCrossRefGoogle Scholar
  200. 200.
    S. Dodelson, L.M. Widrow, Baryon symmetric baryogenesis. Phys. Rev. Lett. 64, 340–343 (1990).  https://doi.org/10.1103/PhysRevLett.64.340ADSCrossRefGoogle Scholar
  201. 201.
    D.L. Morgan, V.W. Hughes, Atomic processes involved in matter-antimatter annihilation. Phys. Rev. D 2, 1389–1399 (1970).  https://doi.org/10.1103/PhysRevD.2.1389ADSCrossRefGoogle Scholar
  202. 202.
    L. Canetti, M. Drewes, M. Shaposhnikov, Matter and antimatter in the universe. New J. Phys. 14, 095012 (2012).  https://doi.org/10.1088/1367-2630/14/9/095012ADSCrossRefGoogle Scholar
  203. 203.
    A.G. Cohen, A. De, Rujula, S.L. Glashow, A matter-antimatter universe? Astrophys. J. 495, 539–549 (1998).  https://doi.org/10.1086/305328
  204. 204.
    A.G. Cohen, A. De Rujula, Scars on the CBR? (1997), arXiv:astro-ph/9709132
  205. 205.
    A.D. Sakharov, Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967).  https://doi.org/10.1070/PU1991v034n05ABEH002497. [Usp. Fiz. Nauk 161, 61 (1991)]
  206. 206.
    A.D. Linde, Phase transitions in gauge theories and cosmology. Rept. Prog. Phys. 42, 389 (1979).  https://doi.org/10.1088/0034-4885/42/3/001ADSCrossRefGoogle Scholar
  207. 207.
    V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985).  https://doi.org/10.1016/0370-2693(85)91028-7ADSCrossRefGoogle Scholar
  208. 208.
    M.E. Shaposhnikov, Structure of the high temperature gauge ground state and electroweak production of the baryon asymmetry. Nucl. Phys. B 299, 797–817 (1988).  https://doi.org/10.1016/0550-3213(88)90373-2ADSMathSciNetCrossRefGoogle Scholar
  209. 209.
    M.E. Shaposhnikov, Baryon asymmetry of the universe in standard electroweak theory. Nucl. Phys. B 287, 757–775 (1987).  https://doi.org/10.1016/0550-3213(87)90127-1ADSCrossRefGoogle Scholar
  210. 210.
    N. Turok, J. Zadrozny, Dynamical generation of baryons at the electroweak transition. Phys. Rev. Lett. 65, 2331–2334 (1990).  https://doi.org/10.1103/PhysRevLett.65.2331ADSCrossRefGoogle Scholar
  211. 211.
    Michael Dine, Patrick Huet, Robert L. Singleton, Jr., Baryogenesis at the electroweak scale. Nucl. Phys. B 375, 625–648 (1992).  https://doi.org/10.1016/0550-3213(92)90113-P
  212. 212.
    G.W. Anderson, L.J. Hall, The electroweak phase transition and baryogenesis. Phys. Rev. D 45, 2685–2698 (1992).  https://doi.org/10.1103/PhysRevD.45.2685ADSCrossRefGoogle Scholar
  213. 213.
    G.W. Anderson, Remarks on the electroweak phase transition, in 1st Yale-Texas Workshop on Baryon Number Violation at the Electroweak Scale New Haven, Connecticut, March 19–21, 1992 (1992), pp. 0134–143Google Scholar
  214. 214.
    A.G. Cohen, D.B. Kaplan, A.E. Nelson, Progress in electroweak baryogenesis. Ann. Rev. Nucl. Part. Sci. 43, 27–70 (1993).  https://doi.org/10.1146/annurev.ns.43.120193.000331
  215. 215.
    G.R. Farrar, M.E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory. Phys. Rev. D 50, 774 (1994).  https://doi.org/10.1103/PhysRevD.50.774
  216. 216.
    J.M. Cline, Recent progress in electroweak baryogenesis, in Strong and Electroweak Matter 1998. Proceedings, Conference, SEWM 1998, Copenhagen, Denmark, December 2–5, 1998 (1998), pp. 70–80Google Scholar
  217. 217.
    M. Trodden, Electroweak baryogenesis. Rev. Mod. Phys. 71, 1463–1500 (1999).  https://doi.org/10.1103/RevModPhys.71.1463ADSCrossRefGoogle Scholar
  218. 218.
    R.N. Mohapatra, G. Senjanovic, Broken symmetries at high temperature. Phys. Rev. D 20, 3390–3398 (1979).  https://doi.org/10.1103/PhysRevD.20.3390ADSCrossRefGoogle Scholar
  219. 219.
    K. Sato, Cosmological baryon number domain structure and the first order phase transition of a vacuum. Phys. Lett. B 99, 66–70 (1981).  https://doi.org/10.1016/0370-2693(81)90805-4ADSCrossRefGoogle Scholar
  220. 220.
    N. Blinov, Phase transitions: applications to physics beyond the standard model. Ph.D. thesis, British Columbia University, 2015Google Scholar
  221. 221.
    M.B. Gavela, P. Hernandez, J. Orloff, O. Pene, Standard model CP violation and baryon asymmetry. Mod. Phys. Lett. A 9, 795–810 (1994).  https://doi.org/10.1142/S0217732394000629ADSCrossRefGoogle Scholar
  222. 222.
    M. Dine, R. Leigh, P. Huet, A. Linde, D. Linde, Towards the theory of the electroweak phase transition. Phys. Rev. D 46, 550–571 (1992).  https://doi.org/10.1103/PhysRevD.46.550ADSCrossRefGoogle Scholar
  223. 223.
    K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Is there a hot electroweak phase transition at m(H) larger or equal to m(W)? Phys. Rev. Lett. 77, 2887–2890 (1996).  https://doi.org/10.1103/PhysRevLett.77.2887
  224. 224.
    M. Dine, A. Kusenko, The origin of the matter-antimatter asymmetry. Rev. Mod. Phys. 76, 1 (2003).  https://doi.org/10.1103/RevModPhys.76.1ADSCrossRefGoogle Scholar
  225. 225.
    A. Riotto, Theories of baryogenesis, in Proceedings, Summer School in High-energy Physics and Cosmology: Trieste, Italy, June 29–July 17, 1998 (1998), pp. 326–436Google Scholar
  226. 226.
    A. Riotto, M. Trodden, Recent progress in baryogenesis. Ann. Rev. Nucl. Part. Sci. 49, 35–75 (1999).  https://doi.org/10.1146/annurev.nucl.49.1.35ADSCrossRefGoogle Scholar
  227. 227.
    W. Buchmuller, S. Fredenhagen, Elements of baryogenesis, in Current Topics in Astrofundamental Physics: The Cosmic Microwave Background. Proceedings, NATO Advanced Study Institute, 8th Course, Erice, Italy, December 5–16, 1999 (2000), pp. 17–35Google Scholar
  228. 228.
    J.M. Cline, Baryogenesis, in Les Houches Summer School-Session 86: Particle Physics and Cosmology: The Fabric of Spacetime Les Houches, France, July 31–August 25, 2006 (2006)Google Scholar
  229. 229.
    S.N. Gninenko, D.S. Gorbunov, M.E. Shaposhnikov, Search for GeV-scale sterile neutrinos responsible for active neutrino oscillations and baryon asymmetry of the Universe. Adv. High Energy Phys. 2012, 718259 (2012).  https://doi.org/10.1155/2012/718259CrossRefzbMATHGoogle Scholar
  230. 230.
    W.-M. Yang, A model of four generation fermions and cold dark matter and matter-antimatter asymmetry. Phys. Rev. D 87, 095003 (2013).  https://doi.org/10.1103/PhysRevD.87.095003ADSCrossRefGoogle Scholar
  231. 231.
    I. Affleck, M. Dine, A new mechanism for baryogenesis. Nucl. Phys. B 249, 361 (1985).  https://doi.org/10.1016/0550-3213(85)90021-5ADSCrossRefGoogle Scholar
  232. 232.
    R. Allahverdi, A. Mazumdar, A mini review on Affleck-Dine baryogenesis. New J. Phys. 14, 125013 (2012).  https://doi.org/10.1088/1367-2630/14/12/125013ADSCrossRefGoogle Scholar
  233. 233.
    K. Benakli, S. Davidson, Baryogenesis in models with a low quantum gravity scale. Phys. Rev. D 60, 025004 (1999).  https://doi.org/10.1103/PhysRevD.60.025004ADSCrossRefGoogle Scholar
  234. 234.
    M. Yoshimura, Unified gauge theories and the baryon number of the universe. Phys. Rev. Lett. 41, 281–284 (1978).  https://doi.org/10.1103/PhysRevLett.41.281. [Erratum: Phys. Rev. Lett. 42, 746 (1979)]
  235. 235.
    E.W. Kolb, M.S. Turner, Grand unified theories and the origin of the baryon asymmetry. Ann. Rev. Nucl. Part. Sci. 33, 645–696 (1983).  https://doi.org/10.1146/annurev.ns.33.120183.003241ADSCrossRefGoogle Scholar
  236. 236.
    R. Allahverdi, B. Dutta, K. Sinha, Cladogenesis: baryon-dark matter coincidence from branchings in moduli decay. Phys. Rev. D 83, 083502 (2011).  https://doi.org/10.1103/PhysRevD.83.083502ADSCrossRefGoogle Scholar
  237. 237.
    M.R. Buckley, L. Randall, Xogenesis. JHEP 09, 009 (2011).  https://doi.org/10.1007/JHEP09(2011)009
  238. 238.
    J. Shelton, K.M. Zurek, Darkogenesis: a baryon asymmetry from the dark matter sector. Phys. Rev. D 82, 123512 (2010).  https://doi.org/10.1103/PhysRevD.82.123512ADSCrossRefGoogle Scholar
  239. 239.
    M. Blennow, B. Dasgupta, E. Fernandez-Martinez, N. Rius, Aidnogenesis via leptogenesis and dark sphalerons. JHEP 03, 014 (2011).  https://doi.org/10.1007/JHEP03(2011)014ADSCrossRefzbMATHGoogle Scholar
  240. 240.
    L. Canetti, M. Drewes, T. Frossard, M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos. Phys. Rev. D 87, 093006 (2013).  https://doi.org/10.1103/PhysRevD.87.093006ADSCrossRefGoogle Scholar
  241. 241.
    S.M. Boucenna, S. Morisi, Theories relating baryon asymmetry and dark matter: a mini review. Front. Phys. 1, 33 (2014).  https://doi.org/10.3389/fphy.2013.00033
  242. 242.
    C. Cheung, Y. Zhang, Electroweak cogenesis. JHEP 1309, 002 (2013).  https://doi.org/10.1007/JHEP09(2013)002ADSCrossRefGoogle Scholar
  243. 243.
    M.A. Luty, Baryogenesis via leptogenesis. Phys. Rev. D 45, 455–465 (1992).  https://doi.org/10.1103/PhysRevD.45.455ADSCrossRefGoogle Scholar
  244. 244.
    A. Pilaftsis, Heavy majorana neutrinos and baryogenesis. Int. J. Mod. Phys. A 14, 1811–1858 (1999).  https://doi.org/10.1142/S0217751X99000932ADSCrossRefGoogle Scholar
  245. 245.
    T. Asaka, K. Hamaguchi, M. Kawasaki, T. Yanagida, Leptogenesis in inflationary universe. Phys. Rev. D 61, 083512 (2000).  https://doi.org/10.1103/PhysRevD.61.083512
  246. 246.
    W. Buchmuller, M. Plumacher, Neutrino masses and the baryon asymmetry. Int. J. Mod. Phys. A 15, 5047–5086 (2000).  https://doi.org/10.1016/S0217-751X(00)00293-5,  https://doi.org/10.1142/S0217751X00002935
  247. 247.
    W. Buchmuller, P. Di Bari, M. Plumacher, Leptogenesis for pedestrians. Ann. Phys. 315, 305–351 (2005).  https://doi.org/10.1016/j.aop.2004.02.003ADSCrossRefzbMATHGoogle Scholar
  248. 248.
    W. Buchmuller, R.D. Peccei, T. Yanagida, Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci. 55, 311–355 (2005).  https://doi.org/10.1146/annurev.nucl.55.090704.151558ADSCrossRefGoogle Scholar
  249. 249.
    S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rept. 466, 105–177 (2008).  https://doi.org/10.1016/j.physrep.2008.06.002ADSCrossRefGoogle Scholar
  250. 250.
    R. Rangarajan, D.V. Nanopoulos. Inflationary baryogenesis. Phys. Rev. D 64, 063511 (2001).  https://doi.org/10.1103/PhysRevD.64.063511
  251. 251.
    S.H.-S. Alexander, M.E. Peskin, M.M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation. Phys. Rev. Lett. 96, 081301 (2006).  https://doi.org/10.1103/PhysRevLett.96.081301
  252. 252.
    S. Alexander, A. Marciano, D. Spergel, Chern-simons inflation and baryogenesis. JCAP 1304, 046 (2013).  https://doi.org/10.1088/1475-7516/2013/04/046ADSMathSciNetCrossRefGoogle Scholar
  253. 253.
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933).  https://doi.org/10.1007/s10714-008-0707-4. [Gen. Rel. Grav. 41,207(2009)]
  254. 254.
    V.C. Rubin, W. Kent Ford, Jr., Rotation of the andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 159, 379–403 (1970).  https://doi.org/10.1086/150317
  255. 255.
    V.C. Rubin, N. Thonnard, W.K. Ford Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J. 238, 471 (1980).  https://doi.org/10.1086/158003ADSCrossRefGoogle Scholar
  256. 256.
    V.C. Rubin, D. Burstein, W.K. Ford Jr., N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of SA, SB, and SC rotation properties. Astrophys. J. 289, 81 (1985).  https://doi.org/10.1086/162866ADSCrossRefGoogle Scholar
  257. 257.
    M. Persic, P. Salucci, Rotation curves of 967 spiral galaxies. Astrophys. J. Suppl. 99, 501 (1995).  https://doi.org/10.1086/192195ADSCrossRefGoogle Scholar
  258. 258.
    M. Persic, P. Salucci, F. Stel, The universal rotation curve of spiral galaxies: 1. The dark matter connection. Mon. Not. Roy. Astron. Soc. 281, 27 (1996).  https://doi.org/10.1093/mnras/281.1.27,  https://doi.org/10.1093/mnras/278.1.27
  259. 259.
    J.F. Navarro, C.S. Frenk, S.D.M. White, The structure of cold dark matter halos. Astrophys. J. 462, 563–575 (1996).  https://doi.org/10.1086/177173
  260. 260.
    W.J.G. de Blok, F. Walter, E. Brinks, C. Trachternach, S-H. Oh, R.C. Kennicutt, Jr., High-resolution rotation curves and galaxy mass models from THINGS. Astron. J. 136, 2648–2719 (2008).  https://doi.org/10.1088/0004-6256/136/6/2648
  261. 261.
    D.J. Hegyi, K.A. Olive, Can galactic halos be made of baryons? Phys. Lett. B 126, 28 (1983).  https://doi.org/10.1016/0370-2693(83)90009-6ADSCrossRefGoogle Scholar
  262. 262.
    D.J. Hegyi, K.A. Olive, A case against baryons in galactic halos. Astrophys. J. 303, 56–65 (1986).  https://doi.org/10.1086/164051ADSCrossRefGoogle Scholar
  263. 263.
    G. Steigman, K.A. Olive, D.N. Schramm, Cosmological constraints on superweak particles. Phys. Rev. Lett. 43, 239–242 (1979).  https://doi.org/10.1103/PhysRevLett.43.239
  264. 264.
    K.A. Olive, D.N. Schramm, G. Steigman, Limits on new superweakly interacting particles from primordial nucleosynthesis. Nucl. Phys. B 180, 497–515 (1981).  https://doi.org/10.1016/0550-3213(81)90065-1ADSCrossRefGoogle Scholar
  265. 265.
    G. Steigman, M.S. Turner, Cosmological constraints on the properties of weakly interacting massive particles. Nucl. Phys. B 253, 375–386 (1985).  https://doi.org/10.1016/0550-3213(85)90537-1ADSCrossRefGoogle Scholar
  266. 266.
    E. Aprile et al., Physics reach of the XENON1T dark matter experiment. JCAP 1604(04), 027 (2016).  https://doi.org/10.1088/1475-7516/2016/04/027ADSCrossRefGoogle Scholar
  267. 267.
    D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 118(2), 021303 (2017).  https://doi.org/10.1103/PhysRevLett.118.021303ADSCrossRefGoogle Scholar
  268. 268.
    J.R. Primack, D. Seckel, B. Sadoulet, Detection of cosmic dark matter. Ann. Rev. Nucl. Part. Sci. 38, 751–807 (1988).  https://doi.org/10.1146/annurev.ns.38.120188.003535ADSCrossRefGoogle Scholar
  269. 269.
    K.A. Olive, TASI lectures on dark matter, in Particle Physics and Cosmology: The Quest for Physics Beyond the Standard Model(s). Proceedings, Theoretical Advanced Study Institute, TASI 2002, Boulder, USA, June 3–28, 2002 (2003), pp. 797–851Google Scholar
  270. 270.
    L. Bergstrom, Dark matter candidates. New J. Phys. 11, 105006 (2009).  https://doi.org/10.1088/1367-2630/11/10/105006ADSCrossRefGoogle Scholar
  271. 271.
    K. Garrett, G. Duda, Dark matter: a primer. Adv. Astron. 2011, 968283 (2011).  https://doi.org/10.1155/2011/968283ADSCrossRefGoogle Scholar
  272. 272.
    M. Lisanti, Lectures on dark matter physics, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1–26, 2015 (2017), pp. 399–446.  https://doi.org/10.1142/9789813149441_0007
  273. 273.
    D.N. Schramm, G. Steigman, Relic neutrinos and the density of the universe. Astrophys. J. 243, 1 (1981).  https://doi.org/10.1086/158559ADSCrossRefGoogle Scholar
  274. 274.
    M. Milgrom, A modification of the newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).  https://doi.org/10.1086/161130ADSCrossRefGoogle Scholar
  275. 275.
    P. Gondolo, G. Gelmini, Cosmic abundances of stable particles: improved analysis. Nucl. Phys. B 360, 145–179 (1991).  https://doi.org/10.1016/0550-3213(91)90438-4ADSCrossRefGoogle Scholar
  276. 276.
    S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter. Phys. Rev. D 44, 3062–3066 (1991).  https://doi.org/10.1103/PhysRevD.44.3062ADSCrossRefGoogle Scholar
  277. 277.
    Vadim A. Kuzmin, A simultaneous solution to baryogenesis and dark matter problems. Phys. Part. Nucl. 29, 257–265 (1998).  https://doi.org/10.1134/1.953070. [Phys. Atom. Nucl. 61, 1107 (1998)]
  278. 278.
    D.H. Oaknin, A. Zhitnitsky, Baryon asymmetry, dark matter and quantum chromodynamics. Phys. Rev. D 71, 023519 (2005).  https://doi.org/10.1103/PhysRevD.71.023519ADSCrossRefGoogle Scholar
  279. 279.
    R. Kitano, I. Low, Dark matter from baryon asymmetry. Phys. Rev. D 71, 023510 (2005).  https://doi.org/10.1103/PhysRevD.71.023510ADSCrossRefGoogle Scholar
  280. 280.
    G.R. Farrar, G. Zaharijas, Dark matter and the baryon asymmetry. Phys. Rev. Lett. 96, 041302 (2006).  https://doi.org/10.1103/PhysRevLett.96.041302ADSCrossRefGoogle Scholar
  281. 281.
    D.E. Kaplan, M.A. Luty, K.M. Zurek, Asymmetric dark matter. Phys. Rev. D 79, 115016 (2009).  https://doi.org/10.1103/PhysRevD.79.115016ADSCrossRefGoogle Scholar
  282. 282.
    G. Pei-Hong, U. Sarkar, X. Zhang, Visible and dark matter genesis and cosmic positron/electron excesses. Phys. Rev. D 80, 076003 (2009).  https://doi.org/10.1103/PhysRevD.80.076003ADSCrossRefGoogle Scholar
  283. 283.
    H. Davoudiasl, D.E. Morrissey, K. Sigurdson, S. Tulin, Hylogenesis: a unified origin for baryonic visible matter and antibaryonic dark matter. Phys. Rev. Lett. 105, 211304 (2010).  https://doi.org/10.1103/PhysRevLett.105.211304ADSCrossRefGoogle Scholar
  284. 284.
    N. Haba, S. Matsumoto, Baryogenesis from dark sector. Prog. Theor. Phys. 125, 1311–1316 (2011).  https://doi.org/10.1143/PTP.125.1311ADSCrossRefGoogle Scholar
  285. 285.
    G. Pei-Hong, M. Lindner, U. Sarkar, X. Zhang, WIMP dark matter and baryogenesis. Phys. Rev. D 83, 055008 (2011).  https://doi.org/10.1103/PhysRevD.83.055008ADSCrossRefGoogle Scholar
  286. 286.
    L.J. Hall, J. March-Russell, S.M. West, A unified theory of matter genesis: asymmetric freeze-in (2010), arXiv:1010.0245
  287. 287.
    B. Dutta, J. Kumar, Asymmetric dark matter from hidden sector baryogenesis. Phys. Lett. B 699, 364–367 (2011).  https://doi.org/10.1016/j.physletb.2011.04.036ADSCrossRefGoogle Scholar
  288. 288.
    A. Falkowski, J.T. Ruderman, T. Volansky, Asymmetric dark matter from leptogenesis. JHEP 05, 106 (2011).  https://doi.org/10.1007/JHEP05(2011)106ADSCrossRefzbMATHGoogle Scholar
  289. 289.
    J.J. Heckman, S.-J. Rey, Baryon and dark matter genesis from strongly coupled strings. JHEP 06, 120 (2011).  https://doi.org/10.1007/JHEP06(2011)120ADSCrossRefzbMATHGoogle Scholar
  290. 290.
    M.L. Graesser, I.M. Shoemaker, L. Vecchi, Asymmetric WIMP dark matter. JHEP 10, 110 (2011).  https://doi.org/10.1007/JHEP10(2011)110ADSCrossRefzbMATHGoogle Scholar
  291. 291.
    N.F. Bell, K. Petraki, I.M. Shoemaker, R.R. Volkas, Pangenesis in a baryon-symmetric universe: dark and visible matter via the affleck-dine mechanism. Phys. Rev. D 84, 123505 (2011).  https://doi.org/10.1103/PhysRevD.84.123505ADSCrossRefGoogle Scholar
  292. 292.
    C. Cheung, K.M. Zurek, Affleck-dine cogenesis. Phys. Rev. D 84, 035007 (2011).  https://doi.org/10.1103/PhysRevD.84.035007ADSCrossRefGoogle Scholar
  293. 293.
    J. March-Russell, M. McCullough, Asymmetric dark matter via spontaneous co-genesis. JCAP 1203, 019 (2012).  https://doi.org/10.1088/1475-7516/2012/03/019ADSCrossRefGoogle Scholar
  294. 294.
    Y. Cui, L. Randall, B. Shuve, Emergent dark matter, baryon, and lepton numbers. JHEP 08, 073 (2011).  https://doi.org/10.1007/JHEP08(2011)073ADSCrossRefzbMATHGoogle Scholar
  295. 295.
    A. Mazumdar, The origin of dark matter, matter-anti-matter asymmetry, and inflation (2011), arXiv:1106.5408
  296. 296.
    T. Lin, Y. Hai-Bo, K.M. Zurek, On symmetric and asymmetric light dark matter. Phys. Rev. D 85, 063503 (2012).  https://doi.org/10.1103/PhysRevD.85.063503ADSCrossRefGoogle Scholar
  297. 297.
    K. Petraki, M. Trodden, R.R. Volkas, Visible and dark matter from a first-order phase transition in a baryon-symmetric universe. JCAP 1202, 044 (2012).  https://doi.org/10.1088/1475-7516/2012/02/044ADSCrossRefGoogle Scholar
  298. 298.
    W.-Z. Feng, A. Mazumdar, P. Nath, Baryogenesis from dark matter. Phys. Rev. D 88(3), 036014 (2013).  https://doi.org/10.1103/PhysRevD.88.036014ADSCrossRefGoogle Scholar
  299. 299.
    K.M. Zurek, Asymmetric dark matter: theories, signatures, and constraints. Phys. Rept. 537, 91–121 (2014).  https://doi.org/10.1016/j.physrep.2013.12.001ADSCrossRefzbMATHGoogle Scholar
  300. 300.
    P. Ramond, Neutrinos: a glimpse beyond the standard model. Nucl. Phys. Proc. Suppl. 77, 3–9 (1999).  https://doi.org/10.1016/S0920-5632(99)00382-5ADSCrossRefGoogle Scholar
  301. 301.
    Y. Fukuda et al., Measurement of a small atmospheric muon-neutrino / electron-neutrino ratio. Phys. Lett. B 433, 9–18 (1998).  https://doi.org/10.1016/S0370-2693(98)00476-6ADSCrossRefGoogle Scholar
  302. 302.
    Y. Fukuda et al., Study of the atmospheric neutrino flux in the multi-GeV energy range. Phys. Lett. B 436, 33–41 (1998).  https://doi.org/10.1016/S0370-2693(98)00876-4ADSCrossRefGoogle Scholar
  303. 303.
    Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998).  https://doi.org/10.1103/PhysRevLett.81.1562ADSCrossRefGoogle Scholar
  304. 304.
    Y. Fukuda et al., Measurements of the solar neutrino flux from Super-Kamiokande’s first 300 days. Phys. Rev. Lett. 81, 1158–1162 (1998).  https://doi.org/10.1103/PhysRevLett.81.1158. [Erratum: Phys. Rev. Lett. 81, 4279 (1998)]
  305. 305.
    Y. Fukuda et al., Constraints on neutrino oscillation parameters from the measurement of day night solar neutrino fluxes at Super-Kamiokande. Phys. Rev. Lett. 82, 1810–1814 (1999).  https://doi.org/10.1103/PhysRevLett.82.1810ADSCrossRefGoogle Scholar
  306. 306.
    Y. Fukuda et al., Measurement of the solar neutrino energy spectrum using neutrino electron scattering. Phys. Rev. Lett. 82, 2430–2434 (1999).  https://doi.org/10.1103/PhysRevLett.82.2430ADSCrossRefGoogle Scholar
  307. 307.
    Q.R. Ahmad et al., Measurement of the rate of \(\nu_e+d \rightarrow p+p+e^-\) interactions produced by \(^8B\) solar neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 87, 071301 (2001).  https://doi.org/10.1103/PhysRevLett.87.071301
  308. 308.
    Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89, 011301 (2002).  https://doi.org/10.1103/PhysRevLett.89.011301ADSCrossRefGoogle Scholar
  309. 309.
    Q.R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters. Phys. Rev. Lett. 89, 011302 (2002).  https://doi.org/10.1103/PhysRevLett.89.011302ADSCrossRefGoogle Scholar
  310. 310.
    B.T. Cleveland, T. Daily, R. Davis, Jr., J.R. Distel, K. Lande, C.K. Lee, P.S. Wildenhain, J. Ullman, Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 496, 505–526 (1998).  https://doi.org/10.1086/305343
  311. 311.
    V.N. Gavrin, Solar neutrino results from SAGE. Nucl. Phys. Proc. Suppl. 91, 36–43 (2001).  https://doi.org/10.1016/S0920-5632(00)00920-8ADSCrossRefGoogle Scholar
  312. 312.
    E. Bellotti, First results from GNO. Nucl. Phys. Proc. Suppl. 91, 44–49 (2001).  https://doi.org/10.1016/S0920-5632(00)00921-XADSCrossRefGoogle Scholar
  313. 313.
    K.N. Abazajian, Sterile neutrinos in cosmology. Phys. Rept. 711–712, 1–28 (2017).  https://doi.org/10.1016/j.physrep.2017.10.003ADSCrossRefzbMATHGoogle Scholar
  314. 314.
    J. Aasi et al., Advanced LIGO. Class. Quant. Grav. 32, 074001 (2015).  https://doi.org/10.1088/0264-9381/32/7/074001ADSCrossRefGoogle Scholar
  315. 315.
    B.P. Abbott et al., Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X6(4), 041015 (2016).  https://doi.org/10.1103/PhysRevX.6.041015CrossRefGoogle Scholar
  316. 316.
    B.P. Abbott et al., The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914. Astrophys. J. 833(1), L1 (2016).  https://doi.org/10.3847/2041-8205/833/1/L1ADSCrossRefGoogle Scholar
  317. 317.
    B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102ADSMathSciNetCrossRefGoogle Scholar
  318. 318.
    B.P. Abbott et al., Properties of the binary black hole merger GW150914. Phys. Rev. Lett. 116(24), 241102 (2016).  https://doi.org/10.1103/PhysRevLett.116.241102ADSMathSciNetCrossRefGoogle Scholar
  319. 319.
    B.P. Abbott et al., Tests of general relativity with GW150914. Phys. Rev. Lett. 116(22), 221101 (2016).  https://doi.org/10.1103/PhysRevLett.116.221101ADSMathSciNetCrossRefGoogle Scholar
  320. 320.
    B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-Solar-Mass binary black hole coalescence. Phys. Rev. Lett. 116(24), 241103 (2016).  https://doi.org/10.1103/PhysRevLett.116.241103ADSCrossRefGoogle Scholar
  321. 321.
    A. Albert et al., Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and icecube. Phys. Rev. D 96(2), 022005 (2017).  https://doi.org/10.1103/PhysRevD.96.022005ADSMathSciNetCrossRefGoogle Scholar
  322. 322.
    P. Amaro Seoane et al., The gravitational universe (2013), arXiv:1305.5720
  323. 323.
    C. Caprini et al., Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions. JCAP 1604(04), 001 (2016).  https://doi.org/10.1088/1475-7516/2016/04/001
  324. 324.
    E. Gildener, Gauge symmetry hierarchies. Phys. Rev. D 14, 1667 (1976).  https://doi.org/10.1103/PhysRevD.14.1667ADSCrossRefGoogle Scholar
  325. 325.
    S. Weinberg, Gauge hierarchies. Phys. Lett. B 82, 387–391 (1979).  https://doi.org/10.1016/0370-2693(79)90248-XADSMathSciNetCrossRefGoogle Scholar
  326. 326.
    G. Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking. NATO Sci. Ser. B 59, 135–157 (1980).  https://doi.org/10.1007/978-1-4684-7571-5_9
  327. 327.
    E. Gildener, Gauge symmetry hierarchies revisited. Phys. Lett. B 92, 111–114 (1980).  https://doi.org/10.1016/0370-2693(80)90316-0ADSCrossRefGoogle Scholar
  328. 328.
    C. Wetterich, Fine tuning problem and the renormalization group. Phys. Lett. B 140, 215–222 (1984).  https://doi.org/10.1016/0370-2693(84)90923-7
  329. 329.
    M.J.G. Veltman, The infrared-ultraviolet connection. Acta Phys. Polon. B 12, 437 (1981)Google Scholar
  330. 330.
    W.A. Bardeen, On naturalness in the standard model, in Ontake Summer Institute on Particle Physics Ontake Mountain, Japan, August 27–September 2, 1995 (1995)Google Scholar
  331. 331.
    H. Aoki, S. Iso, Revisiting the naturalness problem-who is afraid of quadratic divergences? Phys. Rev. D 86, 013001 (2012).  https://doi.org/10.1103/PhysRevD.86.013001ADSCrossRefGoogle Scholar
  332. 332.
    S.P. Martin, A supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 21, 1–153 (2010).  https://doi.org/10.1142/9789814307505_0001ADSCrossRefzbMATHGoogle Scholar
  333. 333.
    K.A. Meissner, H. Nicolai, Conformal symmetry and the standard model. Phys. Lett. B 648, 312–317 (2007).  https://doi.org/10.1016/j.physletb.2007.03.023ADSMathSciNetCrossRefzbMATHGoogle Scholar
  334. 334.
    Y. Fujii, Scalar-tensor theory of gravitation and spontaneous breakdown of scale invariance. Phys. Rev. D 9, 874–876 (1974).  https://doi.org/10.1103/PhysRevD.9.874ADSCrossRefGoogle Scholar
  335. 335.
    F. Englert, C. Truffin, R. Gastmans, Conformal invariance in quantum gravity. Nucl. Phys. B 117, 407–432 (1976).  https://doi.org/10.1016/0550-3213(76)90406-5ADSCrossRefGoogle Scholar
  336. 336.
    W. Buchmuller, N. Dragon, Scale invariance and spontaneous symmetry breaking. Phys. Lett. B 195, 417–422 (1987).  https://doi.org/10.1016/0370-2693(87)90041-4ADSCrossRefGoogle Scholar
  337. 337.
    C. Wetterich, Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 302, 668–696 (1988).  https://doi.org/10.1016/0550-3213(88)90193-9ADSCrossRefGoogle Scholar
  338. 338.
    W. Buchmuller, N. Dragon, Dilatons in flat and curved space-time. Nucl. Phys. B 321, 207–231 (1989).  https://doi.org/10.1016/0550-3213(89)90249-6ADSCrossRefGoogle Scholar
  339. 339.
    R. Foot, A. Kobakhidze, R.R. Volkas, Electroweak higgs as a pseudo-goldstone boson of broken scale invariance. Phys. Lett. B 655, 156–161 (2007).  https://doi.org/10.1016/j.physletb.2007.06.084ADSCrossRefGoogle Scholar
  340. 340.
    R. Foot, A. Kobakhidze, K.L. McDonald, R.R. Volkas, Neutrino mass in radiatively-broken scale-invariant models. Phys. Rev. D 76, 075014 (2007).  https://doi.org/10.1103/PhysRevD.76.075014
  341. 341.
    R. Foot, A. Kobakhidze, K.L. McDonald, R.R. Volkas, A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory. Phys. Rev. D 77, 035006 (2008).  https://doi.org/10.1103/PhysRevD.77.035006ADSCrossRefGoogle Scholar
  342. 342.
    K.A. Meissner, H. Nicolai, Effective action, conformal anomaly and the issue of quadratic divergences. Phys. Lett. B 660, 260–266 (2008).  https://doi.org/10.1016/j.physletb.2007.12.035ADSMathSciNetCrossRefzbMATHGoogle Scholar
  343. 343.
    M. Shaposhnikov, D. Zenhausern, Scale invariance, unimodular gravity and dark energy. Phys. Lett. B 671, 187–192 (2009).  https://doi.org/10.1016/j.physletb.2008.11.054ADSMathSciNetCrossRefGoogle Scholar
  344. 344.
    M. Shaposhnikov, D. Zenhausern, Quantum scale invariance, cosmological constant and hierarchy problem. Phys. Lett. B 671, 162–166 (2009).  https://doi.org/10.1016/j.physletb.2008.11.041ADSCrossRefGoogle Scholar
  345. 345.
    M.E. Shaposhnikov, F.V. Tkachov, Quantum scale-invariant models as effective field theories (2009), arXiv:0905.4857
  346. 346.
    R. Foot, A. Kobakhidze, R.R. Volkas, Stable mass hierarchies and dark matter from hidden sectors in the scale-invariant standard model. Phys. Rev. D 82, 035005 (2010).  https://doi.org/10.1103/PhysRevD.82.035005ADSCrossRefGoogle Scholar
  347. 347.
    R. Foot, A. Kobakhidze, R.R. Volkas, Cosmological constant in scale-invariant theories. Phys. Rev. D 84, 075010 (2011).  https://doi.org/10.1103/PhysRevD.84.075010ADSCrossRefGoogle Scholar
  348. 348.
    R. Foot, A. Kobakhidze, Electroweak scale invariant models with small cosmological constant. Int. J. Mod. Phys. A 30(21), 1550126 (2015).  https://doi.org/10.1142/S0217751X15501262ADSMathSciNetCrossRefzbMATHGoogle Scholar
  349. 349.
    D. Blas, M. Shaposhnikov, D. Zenhausern, Scale-invariant alternatives to general relativity. Phys. Rev. D 84, 044001 (2011).  https://doi.org/10.1103/PhysRevD.84.044001ADSCrossRefGoogle Scholar
  350. 350.
    I. Oda, Classically scale-invariant B-L model and conformal gravity. Phys. Lett. B 724, 160–164 (2013).  https://doi.org/10.1016/j.physletb.2013.06.014ADSMathSciNetCrossRefzbMATHGoogle Scholar
  351. 351.
    R. Armillis, A. Monin, M. Shaposhnikov, Spontaneously broken conformal symmetry: dealing with the trace anomaly. JHEP 10, 030 (2013).  https://doi.org/10.1007/JHEP10(2013)030ADSMathSciNetCrossRefzbMATHGoogle Scholar
  352. 352.
    I. Bars, P. Steinhardt, N. Turok, Local conformal symmetry in physics and cosmology. Phys. Rev. D 89(4), 043515 (2014).  https://doi.org/10.1103/PhysRevD.89.043515ADSCrossRefGoogle Scholar
  353. 353.
    C. Tamarit, Running couplings with a vanishing scale anomaly. JHEP 12, 098 (2013).  https://doi.org/10.1007/JHEP12(2013)098ADSMathSciNetCrossRefzbMATHGoogle Scholar
  354. 354.
    C. Csaki, N. Kaloper, J. Serra, J. Terning, Inflation from broken scale invariance. Phys. Rev. Lett. 113, 161302 (2014).  https://doi.org/10.1103/PhysRevLett.113.161302
  355. 355.
    R.H. Boels, W. Wormsbecher, Spontaneously broken conformal invariance in observables (2015), arXiv:1507.08162
  356. 356.
    P.G. Ferreira, C.T. Hill, G.G. Ross, Scale-independent inflation and hierarchy generation. Phys. Lett. B 763, 174–178 (2016).  https://doi.org/10.1016/j.physletb.2016.10.036
  357. 357.
    G.K. Karananas, M. Shaposhnikov, Scale invariant alternatives to general relativity. II. Dilaton properties. Phys. Rev. D 93(8), 084052 (2016).  https://doi.org/10.1103/PhysRevD.93.084052ADSMathSciNetCrossRefGoogle Scholar
  358. 358.
    K. Kannike, M. Raidal, C. Spethmann, H. Veermäe, The evolving Planck mass in classically scale-invariant theories. JHEP 04, 026 (2017).  https://doi.org/10.1007/JHEP04(2017)026
  359. 359.
    G.K. Karananas, J. Rubio, On the geometrical interpretation of scale-invariant models of inflation. Phys. Lett. B 761, 223–228 (2016).  https://doi.org/10.1016/j.physletb.2016.08.037
  360. 360.
    P.G. Ferreira, C.T. Hill, G.G. Ross, Weyl current, scale-invariant inflation and planck scale generation. Phys. Rev. D 95(4), 043507 (2017).  https://doi.org/10.1103/PhysRevD.95.043507
  361. 361.
    D.M. Ghilencea, Z. Lalak, P. Olszewski, Standard model with spontaneously broken quantum scale invariance (2016), arXiv:1612.09120
  362. 362.
    P.G. Ferreira, C.T. Hill, G.G. Ross, No fifth force in a scale invariant universe. Phys. Rev. D 95(6), 064038 (2017).  https://doi.org/10.1103/PhysRevD.95.064038ADSMathSciNetCrossRefGoogle Scholar
  363. 363.
    A. Kobakhidze, S. Liang, Standard model with hidden scale invariance and light dilaton (2017), arXiv:1701.04927
  364. 364.
    A. Salvio, Inflationary perturbations in no-scale theories. Eur. Phys. J. C 77(4), 267 (2017).  https://doi.org/10.1140/epjc/s10052-017-4825-6

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kavli Institute of Physics and Mathematics of the UniverseThe University of Tokyo Kashiwa CampusKashiwaJapan

Personalised recommendations