Advertisement

The Musculoskeletal Contribution in Wheelchair Propulsion Systems: Numerical Analysis

  • Nadir Skendraoui
  • Fabien Bogard
  • Sébastien Murer
  • Tareq Z. Ahram
  • Krzysztof Fiok
  • Redha Taiar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 777)

Abstract

Although many improvements are still being investigated in the Manual Wheelchair (MWC), a number of criticisms are formulated by a vast majority of daily users. One of the most significant concerns are related to the handrim propulsion system, which is responsible for micro-traumas. The numerical study described in this paper compares two types of propulsion systems: the classical handrim and the lever propulsion. The purpose is to assess the force required for propulsion and the related consequences on involved muscles in the case of a paraplegic patient. Numerical results on lever propulsion demonstrates improved force distribution and reduced muscle activity compared to the classic handrim propulsion. In our view, these results constitute a promising initial step for demonstrating the superiority of lever propulsion from an ergonomics viewpoint.

Keywords

Modeling Wheelchair Numerical simulation Biomechanics Propulsion-system 

Notes

Acknowledgments

The authors gratefully acknowledge the Communauté d’Agglomération de Châlons-en-Champagne, France, for their kind financial support.

References

  1. 1.
    Rajasekar, R., Pranavkarthik, K.P., Prashanth, R., Kumar, S.S., Sivakumar, A.: Design and fabrication of staircase climbing wheelchair. Int. J. Mech. Eng. Rob. Res. 2, 320 (2013)Google Scholar
  2. 2.
    Skendraoui, N., Bogard, F., Murer, S., Ahram, T., Taiar, R.: Optimization and ergonomics of novel modular wheelchair design. In: Advances in Ergonomics in Design, vol. 588, pp. 479–487. Springer International Publishing (2018)Google Scholar
  3. 3.
    Nickel, E., Hansen, A., Pearlman, J., Goldish, G.: A drive system to add standing mobility to a manual standing wheelchair. Assistive Technol. Official J. RESNA 28(4) (2016). ISSN 1040-0435CrossRefGoogle Scholar
  4. 4.
    Boninger, M.L., Souza, A.L., Cooper, R.A., Fitzgerald, S.G., Koontz, A.M., Fay, B.T.: Propulsion patterns and pushrim biomechanics in manual wheelchair propulsion. Arch. Phys. Med. Rehabil. 83, 718–723 (2002).  https://doi.org/10.1053/apmr.2002.32455CrossRefGoogle Scholar
  5. 5.
    Shimada, S.D., Robertson, R.N., Bonninger, M.L., Cooper, R.A.: Kinematic characterization of wheelchair propulsion. J. Rehabil. Res. Dev. 35, 210 (1998)Google Scholar
  6. 6.
    Van der Woude, L.H., Dallmeijer, A.J., Janssen, T.W., Veeger, D.: Alternative modes of manual wheelchair ambulation: an overview. Am. J. Phys. Med. Rehabil. 80, 765–777 (2001)CrossRefGoogle Scholar
  7. 7.
    Sawatzky, B.J., Slobogean, G.P., Reilly, C.W., Chambers, C.T., Hol, A.T.: Prevalence of shoulder pain in adult- versus childhood-onset wheelchair users: a pilot study. J. Rehabil. Res. Dev. 42, 1 (2004).  https://doi.org/10.1682/JRRD.2004.06.0070CrossRefGoogle Scholar
  8. 8.
    Louis, N.: Analyse biomécanique de la propulsion en fauteuil roulant à mains courantes: indices d’évaluation ergonomique (2010). https://tel.archives-ouvertes.fr/tel-00597217/
  9. 9.
    Moon, Y., Jayaraman, C., Hsu, I.M.K., Rice, I.M., Hsiao-Wecksler, E.T., Sosnoff, J.J.: Variability of peak shoulder force during wheelchair propulsion in manual wheelchair users with and without shoulder pain. Clin. Biomech. 28, 967–972 (2013).  https://doi.org/10.1016/j.clinbiomech.2013.10.004CrossRefGoogle Scholar
  10. 10.
    Van Drongelen, S., van der Woude, L.H., Janssen, T.W., Angenot, E.L., Chadwick, E.K., Veeger, D.H.: Glenohumeral contact forces and muscle forces evaluated in wheelchair-related activities of daily living in able-bodied subjects versus subjects with paraplegia and tetraplegia. Arch. Phys. Med. Rehabil. 86, 1434–1440 (2005).  https://doi.org/10.1016/j.apmr.2005.03.014CrossRefGoogle Scholar
  11. 11.
    Sarraj, A.R., Massarelli, R.: Design history and advantages of a new lever-propelled wheel-chair prototype. Int. J. Adv. Robot. Syst. 8, 12–21 (2011)CrossRefGoogle Scholar
  12. 12.
    Rifai Sarraj, A., Massarelli, R., Rigal, F., Moussa, E., Jacob, C., Fazah, A., Kabbara, M.: Evaluation of a wheelchair prototype with non-conventional, manual propulsion. Ann. Phys. Rehabil. Med. 53, 105–117 (2010)CrossRefGoogle Scholar
  13. 13.
    Sarraj, A.R., Massarelli, R.: Design history and advantages of a new lever-propelled wheel-chair prototype. Int. J. Adv. Robot. Syst. 8, 12–21 (2011)CrossRefGoogle Scholar
  14. 14.
    Shimada, S.D., Robertson, R.N., Bonninger, M.L., Cooper, R.A.: Kinematic characterization of wheelchair propulsion. J. Rehabil. Res. Dev. 35, 210 (1998)Google Scholar
  15. 15.
    Wielenga, T.J.: Simplifications in the simulation of mechanisms containing flexible members (1984)Google Scholar
  16. 16.
    Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14, 1100–1111 (2006).  https://doi.org/10.1016/j.simpat.2006.09.001CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nadir Skendraoui
    • 1
  • Fabien Bogard
    • 1
  • Sébastien Murer
    • 1
  • Tareq Z. Ahram
    • 2
  • Krzysztof Fiok
    • 3
  • Redha Taiar
    • 1
  1. 1.GRESPIUniversité de Reims Champagne-ArdenneReimsFrance
  2. 2.University of Central FloridaIASEOrlandoUSA
  3. 3.University of WarsawWarsawPoland

Personalised recommendations