Advertisement

Adaptive Tree Approximation with Finite Element Functions: A First Look

  • Andreas Veeser
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 15)

Abstract

We provide an introduction to adaptive tree approximation with finite element functions over meshes that are generated by bisection. This approximation technique can be seen as a benchmark for adaptive finite element methods, but may be also used therein for the approximation of data and coarsening. Correspondingly, we focus on approximation problems related to adaptive finite element methods, the design and performance of algorithms, and the resulting convergence rates, together with the involved regularity. For simplicity and clarity, these issues are presented and discussed in detail in the univariate case. The additional technicalities and difficulties of the multivariate case are briefly outlined.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley-Interscience, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Bennett, C., Sharpley, R.: Interpolation of Operators. Pure and Applied Mathematics, vol. 29. Academic, Boston (1988)zbMATHGoogle Scholar
  3. 3.
    Binev, P.: Tree approximation for hp-adaptivity. Interdisciplinary Mathematics Institut, University of South Carolina (2015). Preprint 2015:07Google Scholar
  4. 4.
    Binev, P., DeVore, R.: Fast computation in adaptive tree approximation. Numer. Math. 97, 193–217 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97, 219–268 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Birman, M.Š, Solomjak, M.Z.: Piecewise polynomial approximations of functions of classes W p α. Mat. Sb. (N.S.) 73(115), 331–355 (1967)Google Scholar
  8. 8.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15. Springer, New York (2008)CrossRefGoogle Scholar
  9. 9.
    Carstensen, C., Feischl, M., Page, M., Praetorius, D.: Axioms of adaptivity. Comput. Math. Appl. 67, 1195–1253 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    DeVore, R.A.: A note on adaptive approximation. In: Proceedings of China-U.S. Joint Conference on Approximation Theory, vol. 3, pp. 74–78 (1987)Google Scholar
  11. 11.
    DeVore, R.A.: Nonlinear approximation. Acta Numer. 7, 51–150 (1998)CrossRefGoogle Scholar
  12. 12.
    DeVore R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 33. Springer, Berlin (1993)CrossRefGoogle Scholar
  13. 13.
    DeVore, R.A., Sharpley, R.C.: Maximal functions measuring smoothness. Mem. Am. Math. Soc. 47, (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Diening, L., Kreuzer, C., Stevenson, R.: Instance optimality of the adaptive maximum strategy. Found. Comput. Math. 16, 33–68 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gaspoz, F.D., Morin, P.: Approximation classes for adaptive higher order finite element approximation. Math. Comput. 83, 2127–2160 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kossaczký, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. SIAM J. Sci. Comput. 16, 210–227 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15, 326–347 (1990)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics, vol. 2040, pp. 125–225. Springer, Berlin (2012)Google Scholar
  21. 21.
    Nochetto, R.H., Siebert, K.G. Veeser, A.: Theory of adaptive finite element methods: an introduction. In: Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)CrossRefGoogle Scholar
  22. 22.
    Tantardini, F., Veeser, A., Verfürth, R.: Robust localization of the best error with finite elements in the reaction-diffusion norm. Constr. Approx. 42, 313–347 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Triebel, H.: Theory of Function Spaces. II. Monographs in Mathematics, vol. 84. Birkhäuser, Basel, (1992)Google Scholar
  24. 24.
    Veeser, A.: Approximating gradients with continuous piecewise polynomial functions. Found. Comput. Math. 16, 723–750 (2016)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations