Advertisement

An Introduction to the Theory of M-Decompositions

  • Bernardo Cockburn
  • Guosheng Fu
  • Ke Shi
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 15)

Abstract

We provide a short introduction to the theory of M-decompositions in the framework of steady-state diffusion problems. This theory allows us to systematically devise hybridizable discontinuous Galerkin and mixed methods which can be proven to be superconvergent on unstructured meshes made of elements of a variety of shapes. The main feature of this approach is that it reduces such an effort to the definition, for each element K of the mesh, of the spaces for the flux, V (K), and the scalar variable, W(K), which, roughly speaking, can be decomposed into suitably chosen orthogonal subspaces related to the space traces on ∂K of the scalar unknown, M(∂K). We begin by showing how a simple a priori error analysis motivates the notion of an M-decomposition. We then study the main properties of the M-decompositions and show how to actually construct them. Finally, we provide many examples in the two-dimensional setting. We end by briefly commenting on several extensions including to other equations like the wave equation, the equations of linear elasticity, and the equations of incompressible fluid flow.

Notes

Acknowledgements

The authors would like to express their gratitude to Daniele Antonio Di Pietro, Alexander Ern and Luca Formaggia for their invitation to write this paper. The first author would thank them for the invitation to give a couple of lectures on HDG methods as part of the Introductory School (to the IHP quarter on Numerical Methods for PDEs) they organized in September 5–9, 2016, at the Institut d’Études Scientifiques de Cargèse, in Corse, France. Part of the material of those lectures is further developed here.

The author “Bernardo Cockburn” was partially supported by National Science Foundation grant DMS 1522657.

References

  1. 1.
    Arbogast, T., Xiao, H.: Two-level mortar domain decomposition mortar preconditioners for heterogeneous elliptic problems. Comput. Methods Appl. Mech. Eng. 292, 221–242 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bastian, P., Rivière, B.: Superconvergence and H(div) projection for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 42, 1043–1057 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Brezzi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81, 107–129 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47(5), 3820–3848 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G.R., Brezzi, F., Cagniani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114, pp. 129–177. Springer, Berlin (2016). LMS Durham Symposia funded by the London Mathematical Society. Durham, July 8–16, 2014Google Scholar
  9. 9.
    Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cockburn, B., Shi, K.: Conditions for superconvergence of HDG methods for stokes flow. Math. Comput. 82, 651–671 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal. 33, 747–770 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of HDG methods for the acoustic wave equation. Math. Comput. 83, 65–85 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cockburn, B., Fu, G.: Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decomposition. IMA J. Numer. Anal. 38(2), 566–604 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cockburn, B., Fu, G., Superconvergence by M-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)zbMATHGoogle Scholar
  15. 15.
    Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)zbMATHGoogle Scholar
  16. 16.
    Cockburn, B., Fu, G.: A systematic construction of finite element commuting exact sequences. SIAM J. Numer. Anal. 55(4), 1650–1688 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods on curvilinear elements for second-order elliptic problems. SIAM J. Numer. Anal. 50, 1417–1432 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81, 1327–1353 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cockburn, B., Di-Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50, 635–650 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Cockburn, B., Fu, G., Qiu, W.: Discrete H1-inequalities for spaces admitting M-decompositions (2017, submitted)Google Scholar
  25. 25.
    Cockburn, B., Fu, G., Qiu, W.: A note on the devising of superconvergent HDG methods for stokes flow by M-decompositions. IMA J. Numer. Anal. 37(2), 730–749 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cockburn, B., Fu, X., Hungria, A., Ji, L., Sánchez, M.A., Sayas, F.-J.: Stormer-Numerov HDG methods for the acoustic waves. J. Sci. Comput. 75(2), 597–624 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cockburn, B., Fu, G., Sayas, F.J.: Superconvergence by M-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comput. 86(306), 1609–1641 (2017)zbMATHGoogle Scholar
  28. 28.
    Di-Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Di-Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Meth. Appl. Math. 14(4), 461–472 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Egger, H., Schöberl, J.: A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems. IMA J. Numer. Anal. 30(4), 1206–1234 (2010)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Ern, A., Nicaise, S., Vohralík, M.: An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345, 709–712 (2007)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Gastaldi, L., Nochetto, R.H.: Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations. RAIRO Modél. Math. Anal. Numér. 23, 103–128 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Lehrenfeld, C.: Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Ph.D. thesis, Diplomigenieur Rheinisch-Westfalishen Technischen Hochchule Aachen (2010)Google Scholar
  34. 34.
    Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327–340 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Oikawa, I.: Analysis of a reduced-order HDG method for the stokes equations. J. Sci. Comput. 67(2), 475–492 (2016)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87, 69–93 (2018)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Qui, W., Shi, K.: A superconvergent HDG method for the incompressible Navier-Stokes equations on general polyhedral meshes. IMA J. Numer. Anal. 36, 1943–1967 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Method. Lecture Notes in Mathematics, vol. 606, pp. 292–315. Springer, New York (1977)Google Scholar
  39. 39.
    Sánchez, M.A., Ciuca, C., Nguyen, N.C., Peraire, J., Cockburn, B.: Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys. 350, 951–973 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53, 513–538 (1988)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Division of Applied MathematicsBrown UniversityProvidenceUSA
  3. 3.Department of Mathematics & StatisticsOld Dominion UniversityNorfolkUSA

Personalised recommendations