Advertisement

Defective Boundary Conditions for PDEs with Applications in Haemodynamics

  • Luca Formaggia
  • Christian Vergara
Chapter
Part of the SEMA SIMAI Springer Series book series (SEMA SIMAI, volume 15)

Abstract

This works gives an overview of the mathematical treatment of state-of-the-art techniques for partial differential problems where boundary data are provided only in terms of averaged quantities. A condition normally indicated as “defective boundary condition”. We present and analyze several procedures by which this type of problems can be handled.

Notes

Acknowledgements

The authors would like to thank B. Guerciotti and D. Le Van for their support in the numerical experiments, and dr M. Domanin for providing the radiological images. They also gratefully acknowledge the financial support of the Italian MIUR by the grant PRIN12, number 201289A4LX, “Mathematical and numerical models of the cardiovascular system, and their clinical applications”. CV has been partially supported also by the H2020-MSCA-ITN-2017, EU project 765374 “ROMSOC - Reduced Order Modelling, Simulation and Optimization of Coupled systems”.

References

  1. 1.
    Asbury, C., Ruberti, J., Bluth, E., Peattie, R.: Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann. Biomed. Eng. 23(1), 29–39 (1995)CrossRefGoogle Scholar
  2. 2.
    Babuŝka, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20(3), 179–192 (1973)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blanco, P., Feijóo, R.: A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med. Eng. Phys. 35(5), 652–667 (2013)CrossRefGoogle Scholar
  4. 4.
    Blanco, P., Pivello, M., Urquiza, S., Feijòo, R.: On the potentialities of 3d-1d coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009)CrossRefGoogle Scholar
  5. 5.
    Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer. 8, 129–151 (1974)zbMATHGoogle Scholar
  6. 6.
    Campbell, I., Ries, J., Dhawan, S., Quyyumi, A., Taylor, W., Oshinski, J.: Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 134(5), 051001 (2012)CrossRefGoogle Scholar
  7. 7.
    Conca, C., Pares, C., Pironneau, O., Thiriet, M.: Navier-Stokes equations with imposed pressure and velocity fluxes. Int. J. Numer. Methods Fluids 20(4), 267–287 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Springer, Netherlands (1996)CrossRefGoogle Scholar
  9. 9.
    Ern, A., Guermond, J.: Theory and Practice of Finite Elements. Springer, Berlin (2004)CrossRefGoogle Scholar
  10. 10.
    Ervin, V., Lee, H.: Numerical approximation of a quasi-Newtonian stokes flow problem with defective boundary conditions. SIAM J. Numer. Anal. 45(5), 2120–2140 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Formaggia, L., Vergara, C.: Prescription of general defective boundary conditions in fluid-dynamics. Milan J. Math. 80(2), 333–350 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: Numerical treatment of defective boundary conditions for the Navier-Stokes equation. SIAM J. Numer. Anal. 40(1), 376–401 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Formaggia, L., Veneziani, A., Vergara, C.: A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 46(6), 2769–2794 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Formaggia, L., Veneziani, A., Vergara, C.: Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Methods Appl. Mech. Eng. 199(9–12), 677–688 (2009)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fortin, M., Guénette, R., Pierre, R.: Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Eng. 143, 79–95 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fustinoni, C., Marengo, M., Zinna, S.: Integration of a lumped parameters code with a finite volume code: numerical analysis of an heat pipe. In: XXVII UIT Congress, p. UIT09-031 (2009)Google Scholar
  17. 17.
    Galvin, K., Lee, H.: Analysis and approximation of the cross model for quasi-Newtonian flows with defective boundary conditions. Appl. Math. Comput. 222, 244254 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Galvin, K., Lee, H., Rebholz, L.: Approximation of viscoelastic flows with defective boundary conditions. J. Non-Newtonian Fluid Mech. 169–170, 104113 (2012)Google Scholar
  19. 19.
    Gunzburger, M.: Perspectives in Flow Control and Optimization. Advances in Design and Control. Society for Industrial and Applied Mathematics, Philadelphia (2003)zbMATHGoogle Scholar
  20. 20.
    He, X., Ku, D. Jr., Moore, J.: Simple calculation of the velocity profiles for pulsatile flow in a blood vessel using mathematica. Ann. Biomed. Eng. 21, 45–49 (1993)CrossRefGoogle Scholar
  21. 21.
    Heywood, J., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comput. 78, 1353–1374 (2009)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Khanafer, K., Bull, J., Upchurch, G. Jr., Berguer, R.: Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Ann. Vasc. Surg. 21(1), 67–74 (2007)CrossRefGoogle Scholar
  24. 24.
    Lee, H.: Optimal control for quasi-Newtonian flows with defective boundary conditions. Comput. Methods Appl. Mech. Eng. 200, 2498–2506 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Leiva, J., Blanco, P., Buscaglia, G.: Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Multiscale Model. Simul. 9, 872–903 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Les, A., Shadden, S., Figueroa, C., Park, J., Tedesco, M., Herfkens, R., Dalman, R., Taylor, C.: Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4), 1288–1313 (2010)CrossRefGoogle Scholar
  27. 27.
    Lions, J.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)CrossRefGoogle Scholar
  28. 28.
    Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., Gerbeau, J.: External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 11(1–2), 1–18 (2012)CrossRefGoogle Scholar
  29. 29.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)CrossRefGoogle Scholar
  30. 30.
    Nitsche, J.: Uber ein variationsprinzip zur lozung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36, 9–15 (1970/1971)CrossRefGoogle Scholar
  31. 31.
    Nocedal, J., Wright, S.: Sequential Quadratic Programming. Springer, Berlin (2006)Google Scholar
  32. 32.
    Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2, 163–197 (2000)CrossRefGoogle Scholar
  33. 33.
    Quarteroni, A., Veneziani, A., Vergara, C.: Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302, 193–252 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modeling, numerical algorithms, clinical applications. Acta Numer. 26(1), 365–590 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Redaelli, A., Boschetti, F., Inzoli, F.: The assignment of velocity profiles in finite elements simulations of pulsatile flow in arteries. Comput. Biol. Med. 27(3), 233–247 (1997)CrossRefGoogle Scholar
  36. 36.
    Tröel, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. American Mathematical Society, Providence (2010)Google Scholar
  37. 37.
    Veneziani, A., Vergara, C.: Flow rate defective boundary conditions in haemodynamics simulations. Int. J. Numer. Meth. Fluids 47, 803–816 (2005)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Veneziani, A., Vergara, C.: An approximate method for solving incompressible Navier-Stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 196(9–12), 1685–1700 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Vergara, C.: Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. J. Sci. Comput. 46(1), 100–123 (2011)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Vergara, C., Le Van, D., Quadrio, M., Formaggia, L., Domanin, M.: Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Med. Eng. Phys. 47, 38–46 (2017)CrossRefGoogle Scholar
  41. 41.
    Whitaker, S.: Introduction to Fluid Mechanics. R.E. Krieger, Malabar (1984)Google Scholar
  42. 42.
    Zunino, P.: Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty technique. Comput. Methods Appl. Mech. Eng. 198(37–40), 3026–3038 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.MOX, Dipartimento di MatematicaPolitecnico di MilanoMilanoItaly

Personalised recommendations