Advertisement

On the Area Requirements of Straight-Line Orthogonal Drawings of Ternary Trees

  • Barbara Covella
  • Fabrizio Frati
  • Maurizio Patrignani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10979)

Abstract

We prove that every n-node ternary tree has a planar straight-line orthogonal drawing in \(O(n^{1.576})\) area, improving upon the previously best known \(O(n^{1.631})\) bound. Further, we present an upper bound, the outcomes of an experimental evaluation, and a conjecture on the area requirements of planar straight-line orthogonal drawings of complete ternary trees.

References

  1. 1.
    Ali, A.: Straight line orthogonal drawings of complete ternery trees. MIT Summer Program in Undergraduate Research Final Paper, July 2015Google Scholar
  2. 2.
    Chan, T.M.: Tree drawings revisited. In: Speckmann, B., Tóth, C.D. (eds.) Symposium on Computational Geometry (SoCG 2018) (2018)Google Scholar
  3. 3.
    Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–162 (2002)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. 2, 187–200 (1992)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood (1999)zbMATHGoogle Scholar
  6. 6.
    Di Battista, G., Frati, F.: Drawing trees, outerplanar graphs, series-parallel graphs, and planar graphs in a small area. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 121–165. Springer, New York (2013).  https://doi.org/10.1007/978-1-4614-0110-0_9CrossRefGoogle Scholar
  7. 7.
    Frati, F.: Straight-line orthogonal drawings of binary and ternary trees. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 76–87. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-77537-9_11CrossRefGoogle Scholar
  8. 8.
    Frati, F., Patrignani, M., Roselli, V.: LR-drawings of ordered rooted binary trees and near-linear area drawings of outerplanar graphs. In: Klein, P.N. (ed.) Symposium on Discrete Algorithms (SODA 2017), pp. 1980–1999. SIAM (2017)Google Scholar
  9. 9.
    Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 320–332. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36151-0_30CrossRefGoogle Scholar
  10. 10.
    Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs. IEICE Trans. 88-A(6), 1583–1588 (2005)CrossRefGoogle Scholar
  11. 11.
    Rusu, A.: Tree drawing algorithms. In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, pp. 155–192. CRC Press (2016). Chap. 5Google Scholar
  12. 12.
    Rusu, A., Santiago, C.: Grid drawings of binary trees: an experimental study. J. Graph Algorithms Appl. 12(2), 131–195 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Shiloach, Y.: Linear and Planar Arrangement of Graphs. Ph.D. thesis, Weizmann Institute of Science, Rehovot (1976)Google Scholar
  14. 14.
    Shin, C., Kim, S.K., Chwa, K.: Area-efficient algorithms for straight-line tree drawings. Comput. Geom. 15(4), 175–202 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wolfram Research Inc.: Mathematica 10 (2014). http://www.wolfram.com

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Barbara Covella
    • 1
  • Fabrizio Frati
    • 1
  • Maurizio Patrignani
    • 1
  1. 1.Roma Tre UniversityRomeItaly

Personalised recommendations