Properties of Right One-Way Jumping Finite Automata

  • Simon Beier
  • Markus HolzerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10952)


Right one-way jumping finite automata (ROWJFAs), were recently introduced in [H. Chigahara, S. Z. Fazekas, A. Yamamura: One-Way Jumping Finite Automata, Internat. J. Found. Comput. Sci., 27(3), 2016] and are jumping automata that process the input in a discontinuous way with the restriction that the input head reads deterministically from left-to-right starting from the leftmost letter in the input and when it reaches the end of the input word, it returns to the beginning and continues the computation. We solve most of the open problems of these devices. In particular, we characterize the family of permutation closed languages accepted by ROWJFAs in terms of Myhill-Nerode equivalence classes. Using this, we investigate closure and non-closure properties as well as inclusion relations to other language families. We also give more characterizations of languages accepted by ROWJFAs for some interesting cases.


  1. 1.
    Beier, S., Holzer, M., Kutrib, M.: Operational state complexity and decidability of jumping finite automata. In: Charlier, É., Leroy, J., Rigo, M. (eds.) DLT 2017. LNCS, vol. 10396, pp. 96–108. Springer, Cham (2017). Scholar
  2. 2.
    Bensch, S., Bordihn, H., Holzer, M., Kutrib, M.: On input-revolving deterministic and nondeterministic finite automata. Inform. Comput. 207(11), 1140–1155 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chigahara, H., Fazekas, S., Yamamura, A.: One-way jumping finite automata. Int. J. Found. Comput. Sci. 27(3), 391–405 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Culy, C.: Formal properties of natural language and linguistic theories. Linguist. Philos. 19, 599–617 (1996)CrossRefGoogle Scholar
  5. 5.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with \(n\) distinct prime factors. Am. J. Math. 35(4), 413–422 (1913)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: characterizations and complexity. In: Drewes, F. (ed.) CIAA 2015. LNCS, vol. 9223, pp. 89–101. Springer, Cham (2015). Scholar
  7. 7.
    Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and complexity results on jumping finite automata (2015).
  8. 8.
    Ginsburg, S., Spanier, E.H.: Bounded ALGOL-like languages. Trans. AMS 113, 333–368 (1964)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Greibach, S.A.: An infinite hierarchy of context-free languages. J. ACM 16(1), 91–106 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  11. 11.
    Meduna, A., Zemek, P.: Jumping finite automata. Int. J. Found. Comput. Sci. 23(7), 1555–1578 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meduna, A., Zemek, P.: Chapter 17 Jumping finite automata. In: Regulated Grammars and Automata, pp. 567–585. Springer, New York (2014). Scholar
  13. 13.
    Vorel, V.: Basic properties of jumping finite automata (2015).

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations