Advertisement

Cover Complexity of Finite Languages

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10952)

Abstract

We consider the notion of cover complexity of finite languages on three different levels of abstraction. For arbitrary cover complexity measures, we give a characterisation of the situations in which they collapse to a bounded complexity measure. Moreover, we show for a restricted class of context-free grammars that its grammatical cover complexity measure w.r.t. a finite language L is unbounded and that the cover complexity of L can be computed from the exact complexities of a finite number of covers \(L' \supseteq L\). We also investigate upper and lower bounds on the grammatical cover complexity of the language operations intersection, union, and concatenation on finite languages for several different types of context-free grammars.

Notes

Acknowledgements

The authors would like to thank Markus Holzer and the anonymous reviewers for several useful comments and suggestions concerning the results in this paper.

References

  1. 1.
    Alspach, B., Eades, P., Rose, G.: A lower-bound for the number of productions required for a certain class of languages. Discrete Appl. Math. 6(2), 109–115 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bucher, W.: A note on a problem in the theory of grammatical complexity. Theor. Comput. Sci. 14, 337–344 (1981)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bucher, W., Maurer, H.A., Culik II, K.: Context-free complexity of finite languages. Theor. Comput. Sci. 28, 277–285 (1984)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bucher, W., Maurer, H.A., Culik II, K., Wotschke, D.: Concise description of finite languages. Theor. Comput. Sci. 14, 227–246 (1981)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages. In: Champarnaud, J.-M., Ziadi, D., Maurel, D. (eds.) WIA 1998. LNCS, vol. 1660, pp. 43–56. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48057-9_4CrossRefMATHGoogle Scholar
  6. 6.
    Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages. Theor. Comput. Sci. 267(1–2), 3–16 (2001)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Černý, A.: Complexity and minimality of context-free grammars and languages. In: Gruska, J. (ed.) MFCS 1977. LNCS, vol. 53, pp. 263–271. Springer, Heidelberg (1977).  https://doi.org/10.1007/3-540-08353-7_144CrossRefGoogle Scholar
  8. 8.
    Dassow, J.: Descriptional complexity and operations – two non-classical cases. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 33–44. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60252-3_3CrossRefMATHGoogle Scholar
  9. 9.
    Dassow, J., Harbich, R.: Production complexity of some operations on context-free languages. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386, pp. 141–154. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31623-4_11CrossRefMATHGoogle Scholar
  10. 10.
    Eberhard, S., Hetzl, S.: Compressibility of finite languages by grammars. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 93–104. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19225-3_8CrossRefMATHGoogle Scholar
  11. 11.
    Eberhard, S., Hetzl, S.: On the compressibility of finite languages and formal proofs. Inf. Comput. 259, 191–213 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gruska, J.: On a classification of context-free languages. Kybernetika 3(1), 22–29 (1967)MathSciNetMATHGoogle Scholar
  13. 13.
    Gruska, J.: Some classifications of context-free languages. Inf. Control 14(2), 152–179 (1969)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gruska, J.: Complexity and unambiguity of context-free grammars and languages. Inf. Control 18(5), 502–519 (1971)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gruska, J.: On the size of context-free grammars. Kybernetika 8(3), 213–218 (1972)MathSciNetMATHGoogle Scholar
  16. 16.
    Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28332-1_26CrossRefMATHGoogle Scholar
  17. 17.
    Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified cuts in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 240–254. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08587-6_17CrossRefGoogle Scholar
  18. 18.
    Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified cuts. Theor. Comput. Sci. 549, 1–16 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 228–242. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28717-6_19CrossRefGoogle Scholar
  20. 20.
    Pudlák, P.: Twelve problems in proof complexity. In: Hirsch, E.A., Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 13–27. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79709-8_4CrossRefGoogle Scholar
  21. 21.
    Tuza, Z.: On the context-free production complexity of finite languages. Discrete Appl. Math. 18(3), 293–304 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Institute of Discrete Mathematics and GeometryTU WienWienAustria

Personalised recommendations