Recent Trends on Nano-biocomposite Polymers for Food Packaging

  • Germán Ayala ValenciaEmail author
  • Paulo José do Amaral Sobral


In recent years, much attention has been focused on research to replace petroleum-based polymers by biodegradable materials. Specify, polymer from natural sources have been considered as the most promising materials for this purpose. However, materials manufacture from natural polymers (e.g. polymeric films) generally present poor mechanical and high water sensibility. A recent alternative to improve the physical properties of natural polymeric films is a reinforcement with nanoparticles, producing nano-biocomposite polymers. The present chapter reviews the state-of-the-art with regard to the use of polymers obtained from biomass and their reinforced with nanoparticles, aiming food packaging applications. This chapter, especially include information about: (1) the use of casein, collagen/gelatin, chitin/chitosan, gluten, soya, starch, whey and zein as macromolecules to manufacture polymeric films, (2) the use of carbon nanotubes, chitin whiskers, metal nanoparticles, nanocellulose, nanoclays and starch nanocrystals to reinforced polymeric films, (3) the main physicochemical properties of nano-biocomposite polymers. The use of casting, tape casting, thermoforming and extrusion to manufacturing polymeric films; as well as the recent applications of nano-biocomposite polymers as food packaging and active/intelligent food packaging materials. Others topics such as nanoparticle migration, future prospects and limitations in nano-biocomposite polymers will be included in this chapter.


Biomass Food applications Nanoparticles Nanotechnology Polymers 


  1. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:S3029–S3039CrossRefGoogle Scholar
  2. Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R (2013) Comparing physico-mechanical and thermal properties of alginate nanocomposite fi lms reinforced with organic and/or inorganic nano fillers. Food Hydrocoll 32(2):416–424CrossRefGoogle Scholar
  3. Abreu AS, Oliveira M, De SA, Rodrigues RM, Cerqueira MA, Vicente AA et al (2015) Antimicrobial nanostructured starch based films for packaging. Carbohydr Polym 129:127–134Google Scholar
  4. Ali A, Ahmed S (2016) Natural polymers: an overview. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova, New YorkGoogle Scholar
  5. Álvarez K, Famá L, Gutiérrez TJ (2017) Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: Part 1. Bentham Science, Sharjah, pp 358–400. EE.UU. ISBN: 978-1-68108-454-1. eISBN: 978-1-68108-453-4. Scholar
  6. Alves JS, Reis KC, Menezes EGT, Pereira FV, Pereira J (2015) Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohydr Polym 115:215–222PubMedCrossRefPubMedCentralGoogle Scholar
  7. Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho F, Brandhoff P et al (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463–476PubMedCrossRefPubMedCentralGoogle Scholar
  8. Andreuccetti C, Carvalho RA, Galicia-garcía T, Martinez-bustos F, González-nuñez R, Grosso CRF (2012) Functional properties of gelatin-based films containing Yucca schidigera extract produced via castin, extrusion and blown extrusion processes: a preliminary study. J Food Eng 113(1):33–40CrossRefGoogle Scholar
  9. Ansorena MR, Zubeldía F, Marcovich NE (2016) Active wheat gluten films obtained by thermoplastic processing. LWT Food Sci Technol. 69:47–54CrossRefGoogle Scholar
  10. Aouada FA, Mattoso LHC, Longo E (2011) A simple procedure for the preparation of lapoonite and thermoplastic starch nanocomposites: structural, mechanical, and thermal characterizations. J Thermoplast Compos 26(1):109–124CrossRefGoogle Scholar
  11. Argos P, Pedersenfl K, Marksl MD, Larkinsflll BA (1982) Structural model for maize Zein proteins. J Biol Chem 257(1):9984–9990PubMedPubMedCentralGoogle Scholar
  12. Arvanitoyannis IS (2002) Formation and properties of collagen and gelatin films and coatings. In: Protein-based films and coatings. CRC, Boca Raton, FL, pp 275–304Google Scholar
  13. Ayumi M, Bonametti J, Salomão P, Maria C, Müller O, Victória M et al (2013) Thermoplastic starch/polyester films: effects of extrusion process and poly lactic acid addition. Mater Sci Eng C 33(7):4112–4117CrossRefGoogle Scholar
  14. Azevedo VM, Borges SV, Marconcini JM, Yoshida MI, Neto ARS, Pereira TC et al (2017) Effect of replacement of corn starch by whey protein isolate in biodegradable film blends obtained by extrusion. Carbohydr Polym 157:971–980PubMedCrossRefPubMedCentralGoogle Scholar
  15. Balakrishnan P, Sreekala MS, Kunaver M, Huskic M, Thomas S (2017) Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydr Polym 169:176–188PubMedCrossRefPubMedCentralGoogle Scholar
  16. Barreras US, Méndez FT, Martínez REM, Valencia CS, Rodríguez PRM, Rodríguez JPL (2016) Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mater Sci Eng C 58:1182–1187CrossRefGoogle Scholar
  17. Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119:105–118CrossRefGoogle Scholar
  18. Belyamani I, Prochazka F, Assezat G (2014) Production and characterization of sodium caseinate edible films made by blown-film extrusion. J Food Eng 121:39–47CrossRefGoogle Scholar
  19. Benjakul S, Nagarajan M, Prodpran T (2016) Films and coatings from collagen and gelatin. In: Montero GMP, Gómez-Guillén M, Carmen LCE, B-C V (eds) Edible films and coatings: fundamentals and applications, 1st edn. Taylor & Francis Group, CRC, Boca Raton, FL, pp 103–124Google Scholar
  20. Bonilla J, Fortunati E, Atarés L, Chiralt A, Kenny JM (2014) Physical, structural and antimicrobial properties of poly vinyl alcohol e chitosan biodegradable films. Food Hydrocoll 35:463–470CrossRefGoogle Scholar
  21. Bonnaillie LM, Zhang H, Akkurt S, Yam KL, Tomasula PM (2014) Casein films: the effects of formulation, environmental conditions and the addition of citric pectin on the structure and mechanical properties. Polymers (Basel) 6:2018–2036CrossRefGoogle Scholar
  22. Bouvier J-M, Campanella OH (2014) Extrusion processing technology: food and non-food biomaterials, 1st edn. Wiley, New YorkCrossRefGoogle Scholar
  23. Bracone M, Merino D, Gonzalez JS, Alvarez VA, Gutiérrez TJ (2016) Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science, New York, pp 119–155 EE.UU. ISBN: 978-1-63485-831-1Google Scholar
  24. Bumbudsanpharoke N, Ko S (2018) The green fabrication, characterization and evaluation of catalytic antioxidation of gold nanoparticle-lignocellulose composite papers for active packaging. Int J Biol Macromol 107:1782–1791PubMedCrossRefGoogle Scholar
  25. Cadene A, Durand-vidal S, Turq P, Brendle J (2005) Study of individual Na-montmorillonite particles size, morphology, and apparent charge. J Colloid Interface Sci 285:719–730PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cano A, Fortuna E, Cháfer M, Gonzáles-Martínez C, Chiralt A, Kenny J (2015) Effect of cellulose nanocrystals on the properties of pea starch-poly (vinyl alcohol) blend films. J Mater Sci 50:6979–6992CrossRefGoogle Scholar
  27. Carbone M, Tommasa D, Sabbatella G (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28(4):273–279CrossRefGoogle Scholar
  28. Chen Y, Ye R, Li X, Wang J (2013) Preparation and characterization of extruded thermoplastic zein-poly(propylene carbonate) film. Ind Crop Prod 49:81–87CrossRefGoogle Scholar
  29. Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chung Y, Ansari S, Estevez L, Hayrapetyan S, Giannelis EP, Lai H (2010) Preparation and properties of biodegradable starch-clay nanocomposites. Carbohydr Polym 79(2):391–396CrossRefGoogle Scholar
  31. Colak BY, Peynichou P, Galland S, Oulahal N, Degraeve P (2016) Antimicrobial activity of Nisin and Natamycin incorporated Sodium Caseinate extrusion-blown films: a comparative study with heat-pressed/solution cast films. J Food Sci 81(5):E1141–E1150PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cornell H (2004) The functionality of wheat starch. In: Eliasson A-C (ed) Starch in food: structure, function and applications, 1st edn. CRC, CambridgeGoogle Scholar
  33. Cummins HZ (2007) Liquid, glass, gel: the phases of colloidal Laponite. J Non-Cryst Solids 353:3891–3905CrossRefGoogle Scholar
  34. Dananjaya SHS, Erandani WKCU, Kim C, Nikapitiya C, Lee J, De ZM (2017) Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol 105:478–488PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dang KM, Yoksan R (2015) Development of thermoplastic starch blown film by incorporating plasticized chitosan. Carbohydr Polym 115:575–581PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dang KM, Yoksan R (2016) Morphological characteristics and barrier properties of thermoplastic starch/chitosan blown film. Carbohydr Polym 150:40–47PubMedCrossRefPubMedCentralGoogle Scholar
  37. De Moraes JO, Scheibe AS, Sereno A, Laurindo JB (2013) Scale-up of the production of cassava starch based films using tape-casting. J Food Eng 119(4):800–808CrossRefGoogle Scholar
  38. De Moraes JO, Scheibe AS, Augusto B, Carcio M (2015) Conductive drying of starch-fiber films prepared by tape casting: drying rates and film properties. LWT Food Sci Technol. 64:356–366CrossRefGoogle Scholar
  39. Deng S, Huang R, Zhou M, Chen F, Fu Q (2016) Hydrophobic cellulose films with excellent strength and toughness via ball milling activated acylation of microfibrillated cellulose. Carbohydr Polym 154:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dhar P, Tarafder D, Kumar A, Katiyar V (2016) Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process. Polymer (Guildf) 87:268–282CrossRefGoogle Scholar
  41. Dimitrijevic M, Karabasil N, Boskovic M, Teodorovic V (2015) Safety aspects of nanotechnology applications in food packaging. Procedia Food Sci 5:57–60CrossRefGoogle Scholar
  42. Djabourov M, Nishinari K, Ross-Murphy SB (2013) Physical gels from biological and synthetic polymers., 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. Doelker E, Geneva C (1993) Cellulose derivatives. In: Advances in polymer science, pp 199–265Google Scholar
  44. Echeverría I, López-caballero ME, Carmen M, Mauri AN, Montero MP (2018) Active nanocomposite films based on soy proteins- montmorillonite- clove essential oil for the preservation of refrigerated bluefin tuna (Thunnus thynnus) fillets. Int J Food Microbiol 266:142–149PubMedCrossRefPubMedCentralGoogle Scholar
  45. Embuscado M, Huber K. Edible films and coatings for food applications. Embuscado M, Huber K, editors. New York: Springer; 2009Google Scholar
  46. Emin MA, Schuchmann HP (2017) A mechanistic approach to analyze extrusion processing of biopolymers by numerical, rheological, and optical methods. Trends Food Sci Technol 60:88–95CrossRefGoogle Scholar
  47. Etxabide A, De Caba K, Guerrero P (2016) A novel approach to manufacture porous biocomposites using extrusion and injection moulding. Eur Polym J 82:324–333CrossRefGoogle Scholar
  48. European Food Contact Materials Legislation. European directives on food packaging. Materials and articles in contact with foodstuffs—plastics. 2002Google Scholar
  49. Fakhouri FM, Martelli SM, Caon T, Velasco I, Buontempo RC, Bilck AP et al (2018) The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT Food Sci Technol. 87:293–300CrossRefGoogle Scholar
  50. Famá LM, Pettarin V, Goyanes SN, Bernal CR (2011) Starch/multi-walled carbon nanotubes composites with improved mechanical properties. Carbohydr Polym 83:1226–1231CrossRefGoogle Scholar
  51. Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR (2016) Ovine tendon collagen: extraction, characterisation and fabrication of thin films for tissue engineering applications. Mater Sci Eng C 68:163–171CrossRefGoogle Scholar
  52. Flaker CHC, Lourenço RV, Bittante AMQB, Sobral PJA (2015) Gelatin-based nanocomposite films: a study on montmorillonite dispersion methods and concentration. J Food Eng 167:65–70CrossRefGoogle Scholar
  53. Gabriel JS, Gonzaga VAM, Poli AL, Schmitt CC (2017) Photochemical synthesis of silver nanoparticles on chitosans/montmorillonite nanocomposite films and antibacterial activity. Carbohydr Polym 171:202–210PubMedCrossRefPubMedCentralGoogle Scholar
  54. Garrido T, Etxabide A, Guerrero P, De CK (2016) Characterization of agar/soy protein biocomposite films: effect of agar on the extruded pellets and compression moulded films. Carbohydr Polym 151:408–416PubMedCrossRefPubMedCentralGoogle Scholar
  55. Ghelejlu SB, Esmaiili M, Almasi H (2016) Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract. Int J Biol Macromol 86:613–621CrossRefGoogle Scholar
  56. Gomathi T, Prasad PS, Sudha PN, Anil S (2017) Size optimization and in vitro biocompatibility studies of chitosan nanoparticles. Int J Biol Macromol 104:1794–1806CrossRefGoogle Scholar
  57. Gómez-Estaca J, Gavara R, Catalá R, Hernández-muñoz P (2016) The potential of proteins for producing food packaging materials: a review. Packag Technol Sci 29:203–224CrossRefGoogle Scholar
  58. Gong B, Liu W, Tan H, Yu D, Song Z, Lucia LA (2016) Understanding shape and morphology of unusual tubular starch nanocrystals. Carbohydr Polym 151:666–675PubMedCrossRefPubMedCentralGoogle Scholar
  59. González A, Igarzabal CIA (2015) Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocoll 43:777–784CrossRefGoogle Scholar
  60. Gras P, Anderssen R, Keentok M, Békés F, Appels R (2001) Gluten protein functionality in wheat flour processing: a review. Aust J Agric Res 52:1311–1323CrossRefGoogle Scholar
  61. Guerrero P, Retegi A, Gabilondo N, De CK (2010) Mechanical and thermal properties of soy protein films processed by casting and compression. J Food Eng 100(1):145–151CrossRefGoogle Scholar
  62. Guerrero P, Stefani PM, Ruseckaite RA, De CK (2011) Functional properties of films based on soy protein isolate and gelatin processed by compression molding. J Food Eng 105(1):65–72CrossRefGoogle Scholar
  63. Guimarães JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydr Polym 80(1):130–138CrossRefGoogle Scholar
  64. Guo M, Wang G (2016) Milk protein polymer and its application in environmentally safe adhesives. Polymers (Basel) 8:1–12Google Scholar
  65. Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener, Beverly, MA, pp 185–232 EE.UU. ISBN: 978-1-119-36350-7. Scholar
  66. Gutiérrez TJ (2018) Characterization and in vitro digestibility of non-conventional starches from guinea arrowroot and La Armuña lentils as potential food sources for special diet regimens. Starch-Stärke 70(1–2):1700124. Scholar
  67. Gutiérrez TJ, Álvarez K (2016) Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. J Funct Foods 26:750–762. Scholar
  68. Gutiérrez TJ, Alvarez VA (2017) Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. React Funct Polym 112:33–44. Scholar
  69. Gutiérrez TJ, Alvarez VA (2017a) Films made by blending poly (ε-caprolactone) with starch and flour from sagu rhizome grown at the Venezuelan amazons. J Polym Environ 25(3):701–716. Scholar
  70. Gutiérrez TJ, Alvarez VA (2017b) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430.2430. Scholar
  71. Gutiérrez TJ, Alvarez VA (2017c) Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions. Data Brief 15:445–448. Scholar
  72. Gutiérrez TJ, Alvarez VA (2017d) Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydr Polym 178:260–269. Scholar
  73. Gutiérrez TJ, Alvarez VA (2018) Bionanocomposite films developed from corn starch and natural and modified nano-clays with or without added blueberry extract. Food Hydrocoll 77:407–420. Scholar
  74. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packaging Shelf Life 3:1–8. Scholar
  75. Gutiérrez TJ, Seligra PG, Medina Jaramillo C, Famá L, Goyanes S (2016) Effect of filler properties on the antioxidant response of thermoplastic starch composites. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley-Scrivener, Beverly, MA, pp 337–370 EE.UU. ISBN: 978-1-119-22362-7. Scholar
  76. Gutiérrez TJ, Guarás MP, Alvarez VA (2017a) Reactive extrusion for the production of starch-based biopackaging. In: Masuelli MA (ed) Biopackaging. CRC, Taylor & Francis Group, Miami, FL, pp 287–315 EE.UU. ISBN: 978-1-4987-4968-8Google Scholar
  77. Gutiérrez TJ, Ponce AG, Alvarez VA (2017b) Nano-clays from natural and modified montmorillonite with and without added blueberry extract for active and intelligent food nanopackaging materials. Mater Chem Phys 194:283–292. Scholar
  78. Hanani ZAN, Beatty E, Roos YH, Morris MA, Kerry JP (2012) Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. J Food Eng 113(4):606–614CrossRefGoogle Scholar
  79. Hanani ZAN, Mcnamara J, Roos YH, Kerry JP (2013) Effect of plasticizer content on the functional properties of extruded gelatin-based composite films. Food Hydrocoll 31(2):264–269CrossRefGoogle Scholar
  80. Hanani ZAN, Mahony JAO, Roos YH, Oliveira PM, Kerry JP (2014) Extrusion of gelatin-based composite films: effects of processing temperature and pH of film forming solution on mechanical and barrier properties of manufactured films. Food Packag Shelf Life 2(2):91–101CrossRefGoogle Scholar
  81. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956CrossRefGoogle Scholar
  82. Hietala M, Rollo P, Kekäläinen K, Oksman K (2014) Extrusion processing of green biocomposites: compounding, fibrillation efficiency, and fiber dispersion. J Appl Polym Sci 39981:1–9Google Scholar
  83. Hong S, Rhim J (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8:5818–5824PubMedCrossRefPubMedCentralGoogle Scholar
  84. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocoll 44:172–182CrossRefGoogle Scholar
  85. Huang C, Kuo J, Wu S, Tsai H (2016) Isolation and characterization of fish scale collagen from tilapia (Oreochromis sp.) by a novel extrusion-hydro-extraction process. Food Chem 190:997–1006PubMedCrossRefPubMedCentralGoogle Scholar
  86. Ji N, Liu C, Zhang S, Xiong L, Sun Q (2016) Elaboration and characterization of corn starch fi lms incorporating silver nanoparticles obtained using short glucan chains. LWT Food Sci Technol. 74:311–318CrossRefGoogle Scholar
  87. Jose J, Alma MA, Dakua JB, Sreekumar PA, Sougrat R, Al-harthi MA (2015) Compatibilizing role of carbon nanotubes in poly (vinyl alcohol)/starch blend. Starch Stärke 30:147–153CrossRefGoogle Scholar
  88. Kalyuzhnaya LM, Bochek AM, Shevchuk IL (2015) Compatibility of carboxymethyl cellulose with hydroxypropyl cellulose in composite films based on them. Polym Syst Technol 88(6):1062–1069Google Scholar
  89. Kanmani P, Rhim J (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kathirgamanathan K, Grigsby W, Edmonds NR, Al HJ (2017) Molecular weight fractionation of high polydispersity native celluloses. Cellulose 24:5261–5265CrossRefGoogle Scholar
  91. Krepker M, Shemesh R, Danin Y, Kashi Y, Vaxman A, Segal E (2017) Active food packaging films with synergistic antimicrobial activity. Food Control Ltd 76:117–126CrossRefGoogle Scholar
  92. Krishna M, Nindo CI, Min SC (2012) Development of fish gelatin edible films using extrusion and compression molding. J Food Eng 108(2):337–344CrossRefGoogle Scholar
  93. Kulicke W-M, Clasen C, Lohman C (2005) Characterization of water-soluble cellulose derivatives in terms of the molar mass and particle size as well as their distribution. Macromol Symp 223:151–174CrossRefGoogle Scholar
  94. Kumar MNVR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  95. Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: nanocomposites. Food Addit Contam 22:37–41CrossRefGoogle Scholar
  96. Li Y, Li J, Xia Q, Zhang B, Wang Q, Huang Q (2012) Understanding the dissolution of α-Zein in aqueous ethanol and acetic acid solutions. J Phys Chem B 116:12057–12064PubMedCrossRefPubMedCentralGoogle Scholar
  97. Li X, Liu A, Ye R, Wang Y, Wang W (2015a) Fabrication of gelatin-laponite composite films: effect of the concentration of laponite on physical properties and the freshness of meat during storage. Food Hydrocoll 44:390–398CrossRefGoogle Scholar
  98. Li X, Qiu C, Ji N, Sun C, Xiong L, Sun Q (2015b) Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 121:155–162PubMedCrossRefPubMedCentralGoogle Scholar
  99. Li S, Donner E, Xiao H, Thompson M, Zhang Y, Rempel C et al (2016) Preparation and characterization of soy protein films with a durable water resistance-adjustable and antimicrobial surface. Mater Sci Eng C 69:947–955CrossRefGoogle Scholar
  100. Liu G, Song Y, Wang J, Zhuang H, Ma L, Li C et al (2014) Effects of nanoclay type on the physical and antimicrobial properties of PVOH-based nanocomposite films. LWT Food Sci Technol. 57(2):562–568CrossRefGoogle Scholar
  101. Llanos JH, Tadini C (2018) Preparation and characterization of bio-nanocomposite films based on cassava starch or chitosan, reinforced with montmorillonite or bamboo nanofibers. Int J Biol Macromol 107:371–382PubMedCrossRefGoogle Scholar
  102. López OV, Zaritzky NE, Grossmann MVE, García MA (2013) Acetylated and native corn starch blend films produced by blown extrusion. J Food Eng 116:286–297CrossRefGoogle Scholar
  103. López O, Versino F, Villar M, García M (2015) Agro-industrial residue from starch extraction of Pachyrhizus ahipa as filler of thermoplastic corn starch films. Carbohydr Polym 134:324–332PubMedCrossRefGoogle Scholar
  104. Ma Q, Zhang Y, Critzer F, Davidson PM, Zivanovic S (2016) Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocoll 52:533–542CrossRefGoogle Scholar
  105. Ma Z, Garrido-maestu A, Casey K (2017a) Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: a review. Carbohydr Polym 176:257–265PubMedCrossRefGoogle Scholar
  106. Ma X, Lv M, Anderson DP, Chang PR (2017b) Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocoll 66:276–285CrossRefGoogle Scholar
  107. Martínez-Camacho AP, Cortez-Rocha MO, Graciano-Verdugo AZ, Rodríguez-Félix F (2013) Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydr Polym 91(2):666–674PubMedCrossRefPubMedCentralGoogle Scholar
  108. Matet M, Heuzey M, Ajji A, Sarazin P (2015) Plasticized chitosan/polyolefin films produced by extrusion. Carbohydr Polym 117:177–184PubMedCrossRefGoogle Scholar
  109. Matsushima N, Danno G, Takezana H, Izumi Y (1997) Three-dimensional structure of maize alpha-zein proteins studied by small-angle X-ray scattering. Biochim Biophys Acta 1339:14–22PubMedCrossRefGoogle Scholar
  110. Matthews LB, Kunkel ME, Acton JC, Ogale AA, Dawson PL (2011) Bioavailability of soy protein and corn zein films. Food Nutr Sci 2:1105–1113Google Scholar
  111. Mendes JF, Paschoalin RT, Carmona VB, Sena AR, Marques ACP, Marconcini JM et al (2016) Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydr Polym 137:452–458PubMedCrossRefPubMedCentralGoogle Scholar
  112. Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393–4412PubMedCrossRefPubMedCentralGoogle Scholar
  113. Metak AM, Nabhani F, Connolly SN (2015) Migration of engineered nanoparticles from packaging into food products. LWT Food Sci Technol 64:781–789CrossRefGoogle Scholar
  114. Mischnick P, Momcilovic D (2010) Advances in carbohydrate chemistry and biochemistry. Chem Struct Anal Starch Cellulose Derivatives 64:117–210Google Scholar
  115. Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5(1):23–29CrossRefGoogle Scholar
  116. Montero B, Rico M, Rodríguez-llamazares S, Barral L (2017) Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr Polym 157:1094–1104PubMedCrossRefPubMedCentralGoogle Scholar
  117. Morgan PE, Treweek TM, Linder RA, Price WE, Carver JA (2005) Casein proteins as molecular chaperones. J Agric Food Chem 53:2670–2683PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mouw JK, Ou G, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15:771–785PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mujtaba M, Salaberria AM, Andres MA, Kaya M, Gunyakti A, Labidi J (2017) Utilization of flax (Linum usitatissimum) cellulose nanocrystals as reinforcing material for chitosan films. Int J Biol Macromol 104:944–952PubMedCrossRefPubMedCentralGoogle Scholar
  120. Nehete JY, Bhambar RS, Narkhede MR, Gawali SR (2013) Natural proteins: sources, isolation, characterization and applications. Pharmacogn Rev 7(14):107–116PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nisperos-Carriedo MO (1994) Edible coatings and films based on polysaccharides. In: Edible coatings and films to improve food quality. CRC, Boca Raton, FL, pp 305–336Google Scholar
  122. Noshirvani N, Hong W, Ghanbarzadeh B, Fasihi H, Montazami R (2018) Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. Int J Biol Macromol 107:2065–2074PubMedCrossRefPubMedCentralGoogle Scholar
  123. Oechsle AM, Häupler M, Weigel F, Gibis M, Kohlus R, Weiss J (2016) Modulation of extruded collagen films by the addition of co-gelling proteins. J Food Eng 171:164–173CrossRefGoogle Scholar
  124. Orsuwan A, Sothornvit R (2017) Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydr Polym 174:235–242PubMedCrossRefPubMedCentralGoogle Scholar
  125. Ortega F, Giannuzzi L, Arce VB, García MA (2017) Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll 70:152–162CrossRefGoogle Scholar
  126. Ortega-toro R, Jiménez A, Talens P, Chiralt A (2014) Properties of starch-hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr Polym 109:155–165PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ortega-Toro R, Morey I, Talens P, Chiralt A (2015) Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydr Polym 127:282–290PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ortiz-Zarama MA, Jiménez-Aparicio A, Perea-Flores MJ, Solorza-Feria J (2014) Barrier, mechanical and morpho-structural properties of gelatin films with carbon nanotubes addition. J Food Eng 120:223–232CrossRefGoogle Scholar
  129. Park JW, Whiteside S, Cho SY (2008) Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT Food Sci Technol. 41:692–700CrossRefGoogle Scholar
  130. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pérez S, Baldwin PM, Gallant DJ (2009) Structural features of starch granules I. In: BeMiller J, Whistler R (eds) Starch: chemistry and technology, 3rd edn. Elsevier B.V., AmsterdamGoogle Scholar
  132. Perotti GF, Tronto J, Bizeto MA, Izumi CMS, Temperini MLA, Lugão AB et al (2014) Biopolymer-clay nanocomposites: cassava starch and synthetic clay cast films. J Braz Chem Soc 25(2):320–330Google Scholar
  133. Pooja D, Panyaram S, Kulhari H, Reddy B (2015) Natural polysaccharide functionalized gold nanoparticles as biocompatible drug delivery carrier. Int J Biol Macromol 80:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  134. Qi G, Venkateshan K, Mo X, Zhang L, Sun XS (2011) Physicochemical properties of soy protein: effects of subunit composition. J Agric Food Chem 59:9958–9964PubMedCrossRefPubMedCentralGoogle Scholar
  135. Quintana R, Persenaire O, Lemmouchi Y, Bonnaud L, Dubois P (2016) Compatibilization of co-plasticized cellulose acetate/water soluble polymers blends by reactive extrusion. Polym Degrad Stab 126:31–38CrossRefGoogle Scholar
  136. Quiroz-Castillo JM, Rodríguez-Félix DE, Grijalva-Monteverde H (2014) Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydr Polym 101:1094–1100PubMedCrossRefPubMedCentralGoogle Scholar
  137. Richard ME, Twiname ER (2000) Tape casting: theory and practice. Wiley, New York, p 293Google Scholar
  138. Rzychon M, Brohée M, Cordeiro F, Haraszi R, Ulberth F, O’Connor G (2017) The feasibility of harmonizing gluten ELISA measurements. Food Chem 234:144–154PubMedPubMedCentralCrossRefGoogle Scholar
  139. Schmid M, Dallmann K, Bugnicourt E, Cordoni D, Wild F, Lazzeri A et al (2012) Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci 562381:1–7Google Scholar
  140. Schrieber R, Gareis H (2007) Gelatine handbook, 1st edn. Wiley, WeinheimCrossRefGoogle Scholar
  141. Selling GW, Utt KD (2013) Effect of multiple extrusion passes on zein. Polym Degrad Stab 98(1):184–189CrossRefGoogle Scholar
  142. Sharma S, Luzinov I (2013) Whey based binary bioplastics. J Food Eng 119(3):404–410CrossRefGoogle Scholar
  143. Shewry PR, Halford NG, Belton PS, Tatham AS (2002) The structure and properties of gluten: an elastic protein from wheat grain. R Soc 357:133–142Google Scholar
  144. Shih C, Shieh Y, Twu Y (2009) Preparation and characterization of cellulose/chitosan blend films. Carbohydr Polym 78(1):169–174CrossRefGoogle Scholar
  145. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958PubMedPubMedCentralCrossRefGoogle Scholar
  146. Singh A, Meena M, Kumar D, Dubey AK, Hassan I (2015) Structural and functional analysis of various globulin proteins from soy seed. Crit Rev Food Sci Nutr 8398:1491–1502CrossRefGoogle Scholar
  147. Soni B, Barbary E, Schilling MW, Mahmoud B (2016) Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr Polym 151:779–789PubMedCrossRefPubMedCentralGoogle Scholar
  148. Sothornvit R, Olsen C, McHuhg T, Krochta J (2007) Tensile properties of compression-molded whey protein sheets: determination of molding condition and glycerol-content effects and comparison with solution-cast films. J Food Eng 78:855–860CrossRefGoogle Scholar
  149. Stylianou A, Yova D (2013) Surface nanoscale imaging of collagen thin films by atomic force microscopy. Mater Sci Eng C 33(5):2947–2957CrossRefGoogle Scholar
  150. Taghizadeh A, Favis BD (2013) Carbon nanotubes in blends of polycaprolactone/thermoplastic starch. Carbohydr Polym 98(1):189–198PubMedCrossRefPubMedCentralGoogle Scholar
  151. Tanada-palmu PS, Grosso CRF (2003) Development and characterization of edible films based on gluten from semi-hard and soft brazilian wheat flours (development of films based on gluten from wheat flours). Food Sci Technol 23(2):264–269CrossRefGoogle Scholar
  152. Tang X, Alavi S (2012) Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films. J Agric Food Chem 60:1954–1962PubMedCrossRefPubMedCentralGoogle Scholar
  153. Tester RF, Karkalas J, Qi X (2004) Starch-composition, fine structure and architecture. J Cereal Sci 39:151–165CrossRefGoogle Scholar
  154. Thompson G, Larkins B (1989) Structural elements regulating Zein gene expression. BioEssays 10(4):108–113PubMedCrossRefPubMedCentralGoogle Scholar
  155. Tilley KA, Benjamin RE, Bagorogoza KE, Okot-kotber BM (2001) Tyrosine cross-links: molecular basis of gluten structure and function. J Agric Food Chem 49:2627–2632PubMedCrossRefPubMedCentralGoogle Scholar
  156. Tsumura K (2009) Improvement of the physicochemical properties of soybean proteins by enzymatic hydrolysis. Food Sci Technol Res 15(4):381–388CrossRefGoogle Scholar
  157. Usman A, Zia KM, Zuber M, Tabasum S, Rehman S, Zia F (2016) Chitin and chitosan based polyurethanes: a review of recent advances and prospective biomedical applications. Int J Biol Macromol 86:630–645PubMedCrossRefPubMedCentralGoogle Scholar
  158. Valencia GA, Vercik LC de O, Ferrari R, Vercik A (2013) Synthesis and characterization of silver nanoparticles using water-soluble starch and its antibacterial activity on Staphylococcus aureus. Starch Stärke 65:931–937CrossRefGoogle Scholar
  159. Valencia GA, Ferreira LG, Llanos JHR, Vercik A (2014a) Synthesis and characterisation of gold nanoparticles using Mentha piperita leaf extract: a green, non-toxic and rapid method. Int J Nano Biomater 5(2/3):181–192CrossRefGoogle Scholar
  160. Valencia GA, de Vercik LC, Vercik A (2014b) A new conductometric biosensor based on horseradish peroxidase immobilized on chitosan and chitosan/gold nanoparticle films. J Polym Eng 34(7):633–638CrossRefGoogle Scholar
  161. Valencia GA, Moraes ICF, Hilliou LHG, Lourenço RV, Sobral PJA (2015) Nanocomposite-forming solutions based on cassava starch and laponite: viscoelastic and rheological characterization. J Food Eng 166:174–181CrossRefGoogle Scholar
  162. Valencia GA, Lourenço RV, Bittante AMQB, Sobral PJA (2016) Physical and morphological properties of nanocomposite films based on gelatin and Laponite. Appl Clay Sci 124–125:260–266CrossRefGoogle Scholar
  163. Valencia GA, Luciano CG, Lourenço RV, Sobral PJA (2018) Microstructure and physical properties of nano-biocomposite films based on cassava starch and laponite. Int J Biol Macromol 107:1576–1583PubMedCrossRefPubMedCentralGoogle Scholar
  164. Vieira MGA, Silva MA, Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263CrossRefGoogle Scholar
  165. Wagh YR, Pushpadass HA, Emerald FM, Nath B (2014) Preparation and characterization of milk protein films and their application for packaging of Cheddar cheese. J Food Sci Technol 51(12):3767–3775PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wang Y, Padua GW (2003) Tensile properties of extruded zein sheets and extrusion blown films. Macromol Mater Eng 288:886–893CrossRefGoogle Scholar
  167. Wang H, Johnson L, Wang T (2004) Preparation of soy protein concentrate and isolate from extruded-expelled soybean meals. J Am Oil Chem Soc 81:713–714CrossRefGoogle Scholar
  168. Wang J, Su Y, Jia F, Jin H (2013) Characterization of casein hydrolysates derived from enzymatic hydrolysis. Chem Cent J 7:1–8CrossRefGoogle Scholar
  169. Wang L, Shankar S, Rhim J (2017) Properties of alginate-based films reinforced with cellulose fibers and cellulose nanowhiskers isolated from mulberry pulp. Food Hydrocoll 63:201–208CrossRefGoogle Scholar
  170. Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119PubMedCrossRefPubMedCentralGoogle Scholar
  171. Wolf K, Sobral PJA, Telis VR (2009) Physicochemical characterization of collagen fibers and collagen powder for self-composite film production. Food Hydrocoll 23:1886–1894CrossRefGoogle Scholar
  172. Yamakawa A, Suzuki S, Oku T, Enomoto K, Ikeda M, Rodrigue J et al (2017) Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. Carbohydr Polym 171:129–135PubMedCrossRefPubMedCentralGoogle Scholar
  173. Yan Q, Hou H, Guo P, Dong H (2012) Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydr Polym 87(1):707–712CrossRefGoogle Scholar
  174. Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771PubMedCrossRefPubMedCentralGoogle Scholar
  175. Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA (2013) Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion. Polym Test 32(6):1123–1127CrossRefGoogle Scholar
  176. Zhanjun L, Lei Z, Minnan C, Jiugao Y (2011) Effect of carboxylate multi-walled carbon nanotubes on the performance of thermoplastic starch nanocomposites. Carbohydr Polym 83(2):447–451CrossRefGoogle Scholar
  177. Zubeldía F, Ansorena MR, Marcovich NE (2015) Wheat gluten films obtained by compression molding. Polym Test 43:68–77CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Germán Ayala Valencia
    • 1
    Email author
  • Paulo José do Amaral Sobral
    • 2
  1. 1.Department of Chemical and Food EngineeringFederal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Food Engineering, Faculty of Animal Science and Food EngineeringUniversity of São PauloPirassunungaBrazil

Personalised recommendations