Current Applications in Food Preservation Based on Marine Biopolymers

  • Mohamed E. I. Badawy
  • Entsar I. Rabea


Marine biopolymers, including polysaccharides such as alginate, carrageenan, chitin, chitosan and gelatin, are biocompatible, biodegradable and non-toxic to mammals and are widely used in a variety of industrial applications. In food, these biopolymers perform a number of functions including gelling and thickening aqueous solutions, as well as stabilizing foams, emulsions and dispersions, inhibiting ice and sugar crystal formation, preventing spoilage and control the release of additive materials. These food biopolymers play an important role in food structure, food functional properties, food processing and shelf life. They are generally hydrophilic due to the large number of hydroxyl groups, which confer high affinity for binding water molecules, so that they can be dispersed in water in the colloidal state. In this chapter, we provide recent collaborative studies of the application of some important biopolymers in food preservation. In addition, the chapter provides the latest technological applications and prospects of these products in food applications. It provides a better understanding of the food systems, improve food qualities, and make better use of food macromolecules.


Biopolymers  Food preservation Technological applications 


Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this chapter.


  1. Abdallah MR, Mohmaed MA, Mohamed HM, Emara MM (2017) Improving the sensory, physicochemical and microbiological quality of pastirma (a traditional dry cured meat product) using chitosan coating. LWT Food Sci Technol 86:247–253CrossRefGoogle Scholar
  2. Abdollahi M, Rezaei M, Farzi G (2012a) Improvement of active chitosan film properties with rosemary essential oil for food packaging. Int J Food Sci Technol 47(4):847–853CrossRefGoogle Scholar
  3. Abdollahi M, Rezaei M, Farzi G (2012b) A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. J Food Eng 111(2):343–350CrossRefGoogle Scholar
  4. Acevedo-Fani A, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2015) Edible films from essential-oil-loaded nanoemulsions: physicochemical characterization and antimicrobial properties. Food Hydrocoll 47:168–177CrossRefGoogle Scholar
  5. Ahmad M, Benjakul S, Prodpran T, Agustini TW (2012) Physico-mechanical and antimicrobial properties of gelatin film from the skin of unicorn leatherjacket incorporated with essential oils. Food Hydrocoll 28(1):189–199CrossRefGoogle Scholar
  6. Ahvenainen R (2003) Active and intelligent packaging: An introduction. Novel Food Packag Tech:5–21Google Scholar
  7. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry: review. LWT Food Sci Technol 43(6):837–842CrossRefGoogle Scholar
  8. Akelah A (2013) Polymers in food packaging and protection. In: Functionalized polymeric materials in agriculture and the food industry. Springer, pp 293–347Google Scholar
  9. Akhtar MJ, Jacquot M, Jasniewski J, Jacquot C, Imran M, Jamshidian M, Paris C, Desobry S (2012) Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydr Polym 89(4):1150–1158PubMedCrossRefPubMedCentralGoogle Scholar
  10. Albert A, Salvador A, Fiszman S (2012) A film of alginate plus salt as an edible susceptor in microwaveable food. Food Hydrocoll 27(2):421–426CrossRefGoogle Scholar
  11. Alboofetileh M, Rezaei M, Hosseini H, Abdollahi M (2014) Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control 36(1):1–7CrossRefGoogle Scholar
  12. Alemán A, Giménez B, Montero P, Gómez-Guillén M (2011) Antioxidant activity of several marine skin gelatins. LWT Food Sci Technol 44(2):407–413CrossRefGoogle Scholar
  13. Al-Naamani L, Dobretsov S, Dutta J (2016) Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications. Innov Food Sci Emerg Technol 38:231–237CrossRefGoogle Scholar
  14. Altiok D, Altiok E, Tihminlioglu F (2010) Physical, antibacterial and antioxidant properties of chitosan films incorporated with thyme oil for potential wound healing applications. J Mater Sci Mater Med 21(7):2227–2236PubMedCrossRefPubMedCentralGoogle Scholar
  15. Álvarez K, Famá L, Gutiérrez TJ (2017) Physicochemical, antimicrobial and mechanical properties of thermoplastic materials based on biopolymers with application in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 1. Bentham Science Publishers, pp 358–400. ISBN: 978-1-68108-454-1. eISBN: 978-1-68108-453-4Google Scholar
  16. Alves VD, Costa N, Coelhoso IM (2010) Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydr Polym 79(2):269–276CrossRefGoogle Scholar
  17. Andevari GT, Rezaei M (2011) Effect of gelatin coating incorporated with cinnamon oil on the quality of fresh rainbow trout in cold storage. Int J Food Sci Technol 46(11):2305–2311CrossRefGoogle Scholar
  18. Angelo AJS, Vercellotti JR (1989) Inhibition of warmed-over flavor and preserving of uncured meat containing materials. Google PatentsGoogle Scholar
  19. Appendini P, Hotchkiss JH (2002) Review of antimicrobial food packaging. Innov Food Sci Emerg Technol 3(2):113–126CrossRefGoogle Scholar
  20. Araki C (1956) Structure of the agarose constituent of agar-agar. Bull Chem Soc Jpn 29(4):543–544CrossRefGoogle Scholar
  21. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll 41:265–273CrossRefGoogle Scholar
  22. Armisen R, Galatas F (2000) Extraction of agar. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. CRC press, CambridgeGoogle Scholar
  23. Aşik E, Candoğan K (2014) Effects of chitosan coatings incorporated with garlic oil on quality characteristics of shrimp. J Food Qual 37(4):237–246CrossRefGoogle Scholar
  24. Atarés L, Chiralt A (2016) Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci Technol 48:51–62CrossRefGoogle Scholar
  25. Avila-Sosa R, Palou E, Munguía MTJ, Nevárez-Moorillón GV, Cruz ARN, López-Malo A (2012) Antifungal activity by vapor contact of essential oils added to amaranth, chitosan, or starch edible films. Int J Food Microbiol 153(1):66–72PubMedCrossRefPubMedCentralGoogle Scholar
  26. Badawy MEI, Rabea EI (2009) Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol Technol 51(1):110–117CrossRefGoogle Scholar
  27. Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:460381CrossRefGoogle Scholar
  28. Badawy MEI, Rabea EI (2016) Chitosan and Its derivatives as active ingredients against plant pests and diseases. In: Bautista-Baños S, Romanazzi G, Jiménez-Aparicio A (eds) Chitosan in the preservation of agricultural commodities. Academic Press, pp 179–219Google Scholar
  29. Badawy MEI, Rabea EI (2017) Chitosan and its modifications as biologically active compounds in different applications. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers (part 2). Bentham Science, p 1Google Scholar
  30. Badawy MEI, Rabea EI, El-Nouby MA (2016a) Preparation, physicochemical characterizations, and the antioxidant activity of the biopolymer films based on modified chitosan with starch, gelatin, and plasticizers. J Polym Mater 33(1):17Google Scholar
  31. Badawy MEI, Rabea EI, Taktak NE, El Nouby MA (2016b) Production and properties of different molecular weights of chitosan from marine shrimp shells. J Chitin Chitosan Sci 4(1):46–54CrossRefGoogle Scholar
  32. Badawy MEI, Rabea EI, AM El-Nouby M, Ismail RIA, Taktak NEM (2017a) Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int J Fruit Sci 17(2):117–136CrossRefGoogle Scholar
  33. Badawy MEI, Taktak NEM, Awad OM, Elfiki SA, El-Ela NEA (2017b) Preparation and characterization of biopolymers chitosan/alginate/gelatin gel spheres crosslinked by glutaraldehyde. J Macromol Sci B 56(6):359–372CrossRefGoogle Scholar
  34. Bajpai SK, Sharma S (2004) Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca 2+ and Ba 2+ ions. React Funct Polym 59(2):129–140CrossRefGoogle Scholar
  35. Baldwin EA, Hagenmaier R, Bai J (2011) Edible coatings and films to improve food quality. CRC PressGoogle Scholar
  36. Balfour E (1871) On the ethnology of hyderabad in the dekhan. MadrasGoogle Scholar
  37. Bao S, Xu S, Wang Z (2009) Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. J Sci Food Agric 89(15):2692–2700CrossRefGoogle Scholar
  38. Benavides S, Villalobos-Carvajal R, Reyes J (2012) Physical, mechanical and antibacterial properties of alginate film: effect of the crosslinking degree and oregano essential oil concentration. J Food Eng 110(2):232–239CrossRefGoogle Scholar
  39. Beverlya RL, Janes ME, Prinyawiwatkula W, No HK (2008) Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiol 25(3):534–537CrossRefGoogle Scholar
  40. Bhatia S (2016) Marine bolysaccharides based nano-materials and Its applications. In: Natural polymer drug delivery systems. Springer, pp 185–225Google Scholar
  41. Bierhalz ACK, da Silva MA, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110(1):18–25CrossRefGoogle Scholar
  42. Bonilla J, Atarés L, Vargas M, Chiralt A (2012) Edible films and coatings to prevent the detrimental effect of oxygen on food quality: possibilities and limitations. J Food Eng 110(2):208–213CrossRefGoogle Scholar
  43. Bonilla J, Talón E, Atarés L, Vargas M, Chiralt A (2013) Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. J Food Eng 118(3):271–278CrossRefGoogle Scholar
  44. Bostan K, Mahan FI (2011) Microbiological quality and shelf-life of sausage treated with chitosan. İstanbul Üniversitesi Veteriner Fakültesi Dergisi 37(2):117–126Google Scholar
  45. Bracone M, Merino D, González J, Alvarez VA, Gutiérrez TJ (2016) Nanopackaging from natural fillers and biopolymers for the development of active and intelligent films. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science Publishers, New York, pp 119–155. ISBN: 978-1-63485-831-1Google Scholar
  46. Braconnot H (1811) Sur la nature des champignons. Ann Chim Phys 79:265–304Google Scholar
  47. Brody AL (2009) Innovations in fresh prepared meal delivery systems. Food TechnolGoogle Scholar
  48. Brody AL, Strupinsky E, Kline LR (2001) Active packaging for food applications. CRC pressGoogle Scholar
  49. Buonocore G, Conte A, Corbo M, Sinigaglia M, Del Nobile M (2005) Mono-and multilayer active films containing lysozyme as antimicrobial agent. Innov Food Sci Emerg Technol 6(4):459–464CrossRefGoogle Scholar
  50. Cacciuttolo MA, Trinh L, Lumpkin JA, Rao G (1993) Hyperoxia induces DNA damage in mammalian cells. Free Radic Biol Med 14(3):267–276PubMedCrossRefPubMedCentralGoogle Scholar
  51. Camo J, Beltrán JA, Roncalés P (2008) Extension of the display life of lamb with an antioxidant active packaging. Meat Sci 80(4):1086–1091PubMedCrossRefPubMedCentralGoogle Scholar
  52. Campaniello D, Bevilacqua A, Sinigaglia M, Corbo M (2008) Chitosan: Antimicrobial activity and potential applications for preserving minimally processed strawberries. Food Microbiol 25(8):992–1000PubMedCrossRefPubMedCentralGoogle Scholar
  53. Campo VL, Kawano DF, da Silva DB, Carvalho I (2009) Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym 77(2):167–180CrossRefGoogle Scholar
  54. Caner C, Vergano P, Wiles J (1998) Chitosan film mechanical and permeation properties as affected by acid, plasticizer, and storage. J Food Sci 63(6):1049–1053CrossRefGoogle Scholar
  55. Casettari L, Gennari L, Angelino D, Ninfali P, Castagnino E (2012) ORAC of chitosan and its derivatives. Food Hydrocoll 28(2):243–247CrossRefGoogle Scholar
  56. Centella MH, Arévalo-Gallegos A, Parra-Saldivar R, Iqbal HM (2017) Marine-derived bioactive compounds for value-added applications in bio-and non-bio sectors. J Clean Prod 168:1559–1565CrossRefGoogle Scholar
  57. Cha DS, Choi JH, Chinnan MS, Park HJ (2002) Antimicrobial films based on Na-alginate and κ-carrageenan. LWT Food Sci Technol 35(8):715–719CrossRefGoogle Scholar
  58. Chang-Bravo L, López-Córdoba A, Martino M (2014) Biopolymeric matrices made of carrageenan and corn starch for the antioxidant extracts delivery of Cuban red propolis and yerba mate. React Funct Polym 85:11–19CrossRefGoogle Scholar
  59. Cheng S-Y, Wang B-J, Weng Y-M (2015) Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorporation of phenolic compounds and dicarboxylic acids. LWT Food Sci Technol 63(1):115–121CrossRefGoogle Scholar
  60. Choi J, Choi W, Cha D, Chinnan M, Park H, Lee D, Park J (2005) Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT Food Sci Technol 38(4):417–423CrossRefGoogle Scholar
  61. Clark DE, Green HC (1936) Alginic acid and process of making same. Google PatentsGoogle Scholar
  62. Cole C (2000) Gelatin. In: Francis FJ (ed) Encyclopedia of food science and technology, vol 4. Wiley, New York, pp 1183–1188Google Scholar
  63. Cooksey K (2005) Effectiveness of antimicrobial food packaging materials. Food Addit Contam 22(10):980–987PubMedCrossRefPubMedCentralGoogle Scholar
  64. Córdoba LJP, Sobral PJ (2017) Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. J Food Eng 213:47–53CrossRefGoogle Scholar
  65. Cruz RS, Camilloto GP, dos Santos Pires AC (2012) Oxygen scavengers: an approach on food preservation. In: Eissa, A.A. (ed), Structure and function of food engineering. InTechGoogle Scholar
  66. Dainelli D, Gontard N, Spyropoulos D, Zondervan-van den Beuken E, Tobback P (2008) Active and intelligent food packaging: legal aspects and safety concerns. Trends Food Sci Technol 19:S103–S112CrossRefGoogle Scholar
  67. de Souza MCR, Marques CT, Dore CMG, da Silva FRF, Rocha HAO, Leite EL (2007) Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol 19(2):153–160CrossRefGoogle Scholar
  68. Del Nobile MA, Gammariello D, Conte A, Attanasio M (2009) A combination of chitosan, coating and modified atmosphere packaging for prolonging Fior di latte cheese shelf life. Carbohydr Polym 78(1):151–156CrossRefGoogle Scholar
  69. Derkach SR, Ilyin SO, Maklakova AA, Kulichikhin VG, Malkin AY (2015) The rheology of gelatin hydrogels modified by κ-carrageenan. LWT Food Sci Technol 63(1):612–619CrossRefGoogle Scholar
  70. Devlieghere F, Vermeiren L, Debevere J (2004a) New preservation technologies: possibilities and limitations. Int Dairy J 14(4):273–285CrossRefGoogle Scholar
  71. Devlieghere F, Vermeulen A, Debevere J (2004b) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21(6):703–714CrossRefGoogle Scholar
  72. Dodane V, Vilivalam VD (1998) Pharmaceutical applications of chitosan. Pharm Sci Technol Today 1(6):246–253CrossRefGoogle Scholar
  73. Duan J, Jiang Y, Cherian G, Zhao Y (2010) Effect of combined chitosan-krill oil coating and modified atmosphere packaging on the storability of cold-stored lingcod (Ophiodon elongates) fillets. Food Chem 122(4):1035–1042CrossRefGoogle Scholar
  74. Dutta PK, Dutta J, Tripathi V (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63(1):20–31Google Scholar
  75. Dutta P, Tripathi S, Mehrotra G, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114(4):1173–1182CrossRefGoogle Scholar
  76. Eça KS, Sartori T, Menegalli FC (2014) Films and edible coatings containing antioxidants—a review. Braz J Food Technol 17(2):98–112CrossRefGoogle Scholar
  77. El Hadrami A, Adam LR, El Hadrami I, Daayf F (2010) Chitosan in plant protection. Mar Drugs 8(4):968–987PubMedPubMedCentralCrossRefGoogle Scholar
  78. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33(4):1819–1841CrossRefGoogle Scholar
  79. Etxabide A, Uranga J, Guerrero P, de la Caba K (2017) Development of active gelatin films by means of valorisation of food processing waste: a review. Food Hydrocoll 68:192–198CrossRefGoogle Scholar
  80. Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303CrossRefGoogle Scholar
  81. Feng T, Du Y, Li J, Hu Y, Kennedy JF (2008) Enhancement of antioxidant activity of chitosan by irradiation. Carbohydr Polym 73(1):126–132CrossRefGoogle Scholar
  82. Fernandez-Saiz P, Lagaron J, Ocio M (2009) Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocoll 23(3):913–921CrossRefGoogle Scholar
  83. Ferreira AR, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes 6(2):22PubMedCentralCrossRefGoogle Scholar
  84. Ganiari S, Choulitoudi E, Oreopoulou V (2017) Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends Food Sci Technol 68:70–82CrossRefGoogle Scholar
  85. Garcıa MA, de la Paz N, Castro C, Rodrıguez JL, Rapado M, Zuluaga R, Ganán P, Casariego A (2015) Effect of molecular weight reduction by gamma irradiation on the antioxidant capacity of chitosan from lobster shells. J Radiat Res Appl Sci 8(2):190–200CrossRefGoogle Scholar
  86. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  87. Gol NB, Patel PR, Rao TR (2013) Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol Technol 85:185–195CrossRefGoogle Scholar
  88. Gómez-Estaca J, Montero P, Giménez B, Gómez-Guillén M (2007) Effect of functional edible films and high pressure processing on microbial and oxidative spoilage in cold-smoked sardine (Sardina pilchardus). Food Chem 105(2):511–520CrossRefGoogle Scholar
  89. Gómez-Estaca J, Bravo L, Gómez-Guillén M, Alemán A, Montero P (2009a) Antioxidant properties of tuna-skin and bovine-hide gelatin films induced by the addition of oregano and rosemary extracts. Food Chem 112(1):18–25CrossRefGoogle Scholar
  90. Gómez-Estaca J, López de Lacey A, Gómez-Guillén M, López-Caballero M, Montero P (2009b) Antimicrobial activity of composite edible films based on fish gelatin and chitosan incorporated with clove essential oil. J Aquat Food Product Technol 18(1–2):46–52CrossRefGoogle Scholar
  91. Gómez-Estaca J, De Lacey AL, López-Caballero M, Gómez-Guillén M, Montero P (2010) Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol 27(7):889–896PubMedCrossRefPubMedCentralGoogle Scholar
  92. Gómez-Estaca J, Balaguer M, López-Carballo G, Gavara R, Hernández-Muñoz P (2017) Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocoll 70:313–320CrossRefGoogle Scholar
  93. Gontard N, Guilbert S, Cuq JL (1993) Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat gluten film. J Food Sci 58(1):206–211CrossRefGoogle Scholar
  94. Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener Publisher, pp 183–232.
  95. Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2016) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403.
  96. Gutiérrez TJ, Herniou-Julien C, Álvarez K, Alvarez VA (2018) Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture. Carbohydr Polym 184:135–143. Scholar
  97. Hambleton A, Debeaufort F, Bonnotte A, Voilley A (2009) Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocoll 23(8):2116–2124CrossRefGoogle Scholar
  98. Hamedi H, Kargozari M, Shotorbani PM, Mogadam NB, Fahimdanesh M (2017) A novel bioactive edible coating based on sodium alginate and galbanum gum incorporated with essential oil of Ziziphora persica: the antioxidant and antimicrobial activity, and application in food model. Food Hydrocoll 72:35–46CrossRefGoogle Scholar
  99. Han JH (2003) Antimicrobial food packaging. Novel Food Packag Tech 8:50–70CrossRefGoogle Scholar
  100. Han JH (2005) Innovations in food packaging. Academic PressGoogle Scholar
  101. Hands S, Peat S (1938) Isolation of an anhydro-L-galactose derivative from agar. Nature 142:797CrossRefGoogle Scholar
  102. Ho C, Huffman D, Bradford D, Egbert W, Mikel W, Jones W (1995) Storage stability of vacuum packaged frozen pork sausage containing soy protein concentrate, carrageenan or antioxidants. J Food Sci 60(2):257–261CrossRefGoogle Scholar
  103. Honarkar H, Barikani M (2009) Applications of biopolymers I: chitosan. Monatshefte für Chemie Chem Month 140(12):1403–1420CrossRefGoogle Scholar
  104. Hong S-I, Rhim J-W (2008) Antimicrobial activity of organically modified nano-clays. J Nanosci Nanotechnol 8(11):5818–5824PubMedCrossRefPubMedCentralGoogle Scholar
  105. Hong YH, Lim GO, Song K (2009) Physical properties of gelidium corneum–gelatin blend films containing grapefruit seed extract or green tea extract and its application in the packaging of pork loins. J Food Sci 74(1):C6–C10PubMedCrossRefPubMedCentralGoogle Scholar
  106. Hoque MS, Benjakul S, Prodpran T (2010) Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. J Food Eng 96(1):66–73CrossRefGoogle Scholar
  107. Hou Y, Shavandi A, Carne A, Bekhit AA, Ng TB, Cheung RCF, Bekhit AE-dA (2016) Marine shells: potential opportunities for extraction of functional and health-promoting materials. Crit Rev Environ Sci Technol 46(11–12):1047–1116CrossRefGoogle Scholar
  108. Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Fraschini C, Bouchard J, Uribe-Calderon J, Kamal MR (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763PubMedCrossRefPubMedCentralGoogle Scholar
  109. Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro-to nanotechnology. Crit Rev Food Sci Nutr 50(9):799–821PubMedCrossRefPubMedCentralGoogle Scholar
  110. Jayas DS, Jeyamkondan S (2002) PH—postharvest technology: Modified atmosphere storage of grains meats fruits and vegetables. Biosyst Eng 82(3):235–251CrossRefGoogle Scholar
  111. Jeon Y-J, Kamil JY, Shahidi F (2002) Chitosan as an edible invisible film for quality preservation of herring and Atlantic cod. J Agric Food Chem 50(18):5167–5178PubMedCrossRefGoogle Scholar
  112. Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Physical properties and antioxidant capacity of starch–sodium caseinate films containing lipids. J Food Eng 116(3):695–702CrossRefGoogle Scholar
  113. Jongjareonrak A, Benjakul S, Visessanguan W, Tanaka M (2008) Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and α-tocopherol. Food Hydrocoll 22(3):449–458CrossRefGoogle Scholar
  114. Jridi M, Hajji S, Ayed HB, Lassoued I, Mbarek A, Kammoun M, Souissi N, Nasri M (2014) Physical, structural, antioxidant and antimicrobial properties of gelatin–chitosan composite edible films. Int J Biol Macromol 67:373–379PubMedCrossRefGoogle Scholar
  115. Juck G, Neetoo H, Chen H (2010) Application of an active alginate coating to control the growth of Listeria monocytogenes on poached and deli turkey products. Int J Food Microbiol 142(3):302–308PubMedCrossRefGoogle Scholar
  116. Kader AA, Zagory D, Kerbel EL, Wang CY (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr 28(1):1–30PubMedCrossRefGoogle Scholar
  117. Kanatt SR, Rao M, Chawla S, Sharma A (2013) Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage. LWT Food Sci Technol 53(1):321–326CrossRefGoogle Scholar
  118. Kanmani P, Rhim J-W (2014a) Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging. Int J Biol Macromol 68:258–266PubMedCrossRefGoogle Scholar
  119. Kanmani P, Rhim J-W (2014b) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll 35:644–652CrossRefGoogle Scholar
  120. Kavoosi G, Dadfar SMM, Purfard AM (2013) Mechanical, physical, antioxidant, and antimicrobial properties of gelatin films incorporated with thymol for potential use as nano wound dressing. J Food Sci 78(2):E244–E250PubMedCrossRefGoogle Scholar
  121. Kavoosi G, Rahmatollahi A, Dadfar SMM, Purfard AM (2014) Effects of essential oil on the water binding capacity, physico-mechanical properties, antioxidant and antibacterial activity of gelatin films. LWT Food Sci Technol 57(2):556–561CrossRefGoogle Scholar
  122. Kerry J, O’grady M, Hogan S (2006) Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: a review. Meat Sci 74(1):113–130PubMedCrossRefGoogle Scholar
  123. Khalil HA, Saurabh CK, Tye Y, Lai T, Easa A, Rosamah E, Fazita M, Syakir M, Adnan A, Fizree H (2017) Seaweed based sustainable films and composites for food and pharmaceutical applications: a review. Renew Sust Energ Rev 77:353–362CrossRefGoogle Scholar
  124. Khan I, Tango CN, Oh DH (2017) Development and evaluation of chitosan and its derivative for the shelf life extension of beef meat under refrigeration storage. Int J Food Sci Technol 52(5):1111–1121CrossRefGoogle Scholar
  125. Kim KW, Thomas R (2007) Antioxidative activity of chitosans with varying molecular weights. Food Chem 101(1):308–313CrossRefGoogle Scholar
  126. Kim HS, Lee C-G, Lee EY (2011) Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng 16(5):843CrossRefGoogle Scholar
  127. Knutsen S, Myslabodski D, Larsen B, Usov A (1994) A modified system of nomenclature for red algal galactans. Bot Mar 37(2):163–170CrossRefGoogle Scholar
  128. Koli JM, Basu S, Nayak BB, Patange SB, Pagarkar AU, Gudipati V (2012) Functional characteristics of gelatin extracted from skin and bone of Tiger-toothed croaker (Otolithes ruber) and Pink perch (Nemipterus japonicus). Food Bioprod Process 90(3):555–562CrossRefGoogle Scholar
  129. Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144(1):51–63PubMedCrossRefGoogle Scholar
  130. Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2):126–139CrossRefGoogle Scholar
  131. Krefting A (1903) Process of extracting glutinous substances from seaweed. Google PatentsGoogle Scholar
  132. Krkić N, Šojić B, Lazić V, Petrović L, Mandić A, Sedej I, Tomović V (2013) Lipid oxidative changes in chitosan-oregano coated traditional dry fermented sausage Petrovská klobása. Meat Sci 93(3):767–770PubMedCrossRefGoogle Scholar
  133. Kumar M, McGlade D, Lawler J (2014) Functionalized chitosan derived novel positively charged organic–inorganic hybrid ultrafiltration membranes for protein separation. RSC Adv 4(42):21699–21711CrossRefGoogle Scholar
  134. Lassaigne JL (1843) C. r. acad. sci., Paris 16, 387 (1843). Ann Chem 48Google Scholar
  135. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lee S-R, Park H-M, Lim H, Kang T, Li X, Cho W-J, Ha C-S (2002) Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43(8):2495–2500CrossRefGoogle Scholar
  137. Leon PG, Rojas AM (2007) Gellan gum films as carriers of L-(+)-ascorbic acid. Food Res Int 40(5):565–575CrossRefGoogle Scholar
  138. Li K, Hwang Y, Tsai T, Chi S (1996) Chelation of iron ion and antioxidative effect on cooked salted ground pork by N-carboxymethylchitosan (NCMC). Food Sci Taiwan 23:608–616Google Scholar
  139. Li J-H, Miao J, Wu J-L, Chen S-F, Zhang Q-Q (2014) Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll 37:166–173CrossRefGoogle Scholar
  140. Liu X, Zeng A, Song T, Li L, Yang F, Wang Q, Wu B, Liu Y, Zhi X (2012) Hypocholesterolemic effects of N-[(2-Hydroxy-3-N,N-Dimethylhexadecyl Ammonium) propyl] chitosan chloride in high-fat-diet-induced rats. J Biomater Sci Polym Ed 23(8):1107–1114PubMedCrossRefGoogle Scholar
  141. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114(12):6423–6461PubMedCrossRefGoogle Scholar
  142. Llorens A, Lloret E, Picouet PA, Trbojevich R, Fernandez A (2012) Metallic-based micro and nanocomposites in food contact materials and active food packaging. Trends Food Sci Technol 24(1):19–29CrossRefGoogle Scholar
  143. Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release—a review. Int J Food Sci Technol 41(1):1–21CrossRefGoogle Scholar
  144. Maizura M, Fazilah A, Norziah M, Karim A (2007) Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. J Food Sci 72(6):C324–C330PubMedCrossRefGoogle Scholar
  145. Makino Y, Hirata T (1997) Modified atmosphere packaging of fresh produce with a biodegradable laminate of chitosan-cellulose and polycaprolactone. Postharvest Biol Technol 10(3):247–254CrossRefGoogle Scholar
  146. Manivasagan P, Oh J (2016) Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. Int J Biol Macromol 82:315–327PubMedCrossRefGoogle Scholar
  147. Manzanarez-López F, Soto-Valdez H, Auras R, Peralta E (2011) Release of α-tocopherol from poly (lactic acid) films, and its effect on the oxidative stability of soybean oil. J Food Eng 104(4):508–517CrossRefGoogle Scholar
  148. Mariod AA, Fadul H (2013) Gelatin, source, extraction and industrial applications. Acta Sci Pol Technol Aliment 12(2):135–147Google Scholar
  149. Mariod AA, Fadul H (2015) Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making. Revista de Agaroquimica y Tecnologia de Alimentos 21(5):380–391Google Scholar
  150. Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll 27(1):220–227CrossRefGoogle Scholar
  151. Martucci JF, Ruseckaite RA (2017) Antibacterial activity of gelatin/copper (II)-exchanged montmorillonite films. Food Hydrocoll 64:70–77CrossRefGoogle Scholar
  152. Martucci J, Gende L, Neira L, Ruseckaite R (2015) Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Ind Crop Prod 71:205–213CrossRefGoogle Scholar
  153. McHugh D (2003) Chapter 7: Carrageenan. A guide to the seaweed industry: FAO fisheries technical paper 441Google Scholar
  154. Mi F-L, Shyu S-S, Wu Y-B, Lee S-T, Shyong J-Y, Huang R-N (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22(2):165–173PubMedCrossRefGoogle Scholar
  155. Min B, Oh JH (2009) Antimicrobial activity of catfish gelatin coating containing origanum (Thymus capitatus) oil against Gram-negative pathogenic bacteria. J Food Sci 74(4):M143–M148PubMedCrossRefGoogle Scholar
  156. Mohammed Fayaz A, Balaji K, Girilal M, Kalaichelvan P, Venkatesan R (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252PubMedCrossRefGoogle Scholar
  157. Mohebbi M, Ansarifar E, Hasanpour N, Amiryousefi MR (2012) Suitability of Aloe vera and gum tragacanth as edible coatings for extending the shelf life of button mushroom. Food Bioprocess Technol 5(8):3193–3202CrossRefGoogle Scholar
  158. Moncayo D, Buitrago G, Algecira N (2013) The surface properties of biopolymer-coated fruit: a review. Ingeniería e Investigación 33(3):11–16Google Scholar
  159. Moreira MR, Pereda M, Marcovich NE, Roura SI (2011) Antimicrobial effectiveness of bioactive packaging materials from edible chitosan and casein polymers: assessment on carrot, cheese, and salami. J Food Sci 76(1):M54–M63CrossRefGoogle Scholar
  160. Muzzarelli RAA (1973) Natural chelating polymers: alginic acid, chitin and chitosan. Pergamon Press, Oxford, New YorkGoogle Scholar
  161. Nafchi AM, Moradpour M, Saeidi M, Alias AK (2014) Effects of nanorod-rich ZnO on rheological, sorption isotherm, and physicochemical properties of bovine gelatin films. LWT Food Sci Technol 58(1):142–149CrossRefGoogle Scholar
  162. Nanaki S, Karavas E, Kalantzi L, Bikiaris D (2010) Miscibility study of carrageenan blends and evaluation of their effectiveness as sustained release carriers. Carbohydr Polym 79(4):1157–1167CrossRefGoogle Scholar
  163. Neetoo H, Ye M, Chen H (2010) Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int J Food Microbiol 136(3):326–331PubMedCrossRefGoogle Scholar
  164. Ngo D-H, Kim S-K (2014) Antioxidant effects of chitin, chitosan and their derivatives. Elsevier, Oxford, UKCrossRefGoogle Scholar
  165. No HK, Park NY, Lee SH, Meyers SP (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol 74(1):65–72PubMedCrossRefGoogle Scholar
  166. No H, Meyers S, Prinyawiwatkul W, Xu Z (2007) Applications of chitosan for improvement of quality and shelf life of foods: a review. J Food Sci 72(5):R87–R100PubMedCrossRefGoogle Scholar
  167. Nollet LM (2016) Marine microorganisms: extraction and analysis of bioactive compounds. CRC Press, Boca RatonCrossRefGoogle Scholar
  168. Norajit K, Kim KM, Ryu GH (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98(3):377–384CrossRefGoogle Scholar
  169. Nowzari F, Shábanpour B, Ojagh SM (2013) Comparison of chitosan–gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem 141(3):1667–1672PubMedCrossRefGoogle Scholar
  170. Nussinovitch A, Gershon Z (1997) Physical characteristics of agar—yeast sponges. Food Hydrocoll 11(2):231–237CrossRefGoogle Scholar
  171. Odier A (1823) Mémoire sur la composition chimique des parties cornées des insectesGoogle Scholar
  172. Ogaji IJ, Nep EI, Audu-Peter JD (2012) Advances in natural polymers as pharmaceutical excipients. Pharm Anal Acta 3:146.CrossRefGoogle Scholar
  173. Olaimat AN, Holley RA (2015) Control of Salmonella on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized Oriental mustard extract plus EDTA. Food Microbiol 48:83–88PubMedCrossRefGoogle Scholar
  174. Olatunji O (2016) Classification of natural polymers. In: Olatunji O (ed) Natural polymers. Springer, Basel, pp 1–17CrossRefGoogle Scholar
  175. Oussalah M, Caillet S, Salmieri S, Saucier L, Lacroix M (2006) Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J Food Prot 69(10):2364–2369PubMedCrossRefPubMedCentralGoogle Scholar
  176. Park HJ (1999) Development of advanced edible coatings for fruits. Trends Food Sci Technol 10(8):254–260CrossRefGoogle Scholar
  177. Park P-J, Je J-Y, Kim S-K (2004a) Free radical scavenging activities of differently deacetylated chitosans using an ESR spectrometer. Carbohydr Polym 55(1):17–22CrossRefGoogle Scholar
  178. Park SI, Daeschel M, Zhao Y (2004b) Functional properties of antimicrobial lysozyme-chitosan composite films. J Food Sci 69(8):M215–M221CrossRefGoogle Scholar
  179. Park SI, Stan SD, Daeschel MA, Zhao Y (2005) Antifungal coatings on fresh strawberries (Fragaria× ananassa) to control mold growth during cold storage. J Food Sci 70(4):M202–M207CrossRefGoogle Scholar
  180. Pasanphan W, Rattanawongwiboon T, Choofong S, Güven O, Katti KK (2015) Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms. Radiat Phys Chem 106:360–370CrossRefGoogle Scholar
  181. Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez C (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocoll 30(1):272–280CrossRefGoogle Scholar
  182. Paul W, Sharma CP (2004) Chitosan and alginate wound dressings: a short review. Trends Biomater Artif Organs 18(1):18–23Google Scholar
  183. Paula HCB, de Paula RCM, Bezerral SKF (2006) Swelling and release kinetics of larvicide-containing chitosan/cashew gum beads. J Appl Polym Sci 102(1):395–400.CrossRefGoogle Scholar
  184. Peng Y, Wu Y, Li Y (2013) Development of tea extracts and chitosan composite films for active packaging materials. Int J Biol Macromol 59:282–289PubMedCrossRefPubMedCentralGoogle Scholar
  185. Percival E, Somerville J, Forbes I (1938) Isolation of an anhydro-sugar derivative from agar. Nature 142:797–798CrossRefGoogle Scholar
  186. Perdones A, Sánchez-González L, Chiralt A, Vargas M (2012) Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol Technol 70:32–41CrossRefGoogle Scholar
  187. Pereda M, Ponce A, Marcovich N, Ruseckaite R, Martucci J (2011) Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll 25(5):1372–1381CrossRefGoogle Scholar
  188. Pereira L (2011) A review of the nutrient composition of selected edible seaweeds. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Nova Science, pp 15–47Google Scholar
  189. Pereira de Abreu D, Cruz J, Paseiro Losada P (2012) Active and intelligent packaging for the food industry. Food Rev Intl 28(2):146–187CrossRefGoogle Scholar
  190. Pereira L, Gheda SF, Ribeiro-Claro PJ (2013) Analysis by vibrational spectroscopy of seaweed polysaccharides with potential use in food, pharmaceutical, and cosmetic industries. Int J Carbohydr Chem 2013:537202CrossRefGoogle Scholar
  191. Phillips GO, Williams PA (2009) Handbook of hydrocolloids. ElsevierGoogle Scholar
  192. Pokorny J (2007) Antioxidants in food preservation. In: Handbook of food preservation, vol 2, pp 259–286CrossRefGoogle Scholar
  193. Prabu K, Natarajan E (2012) In vitro antimicrobial and antioxidant activity of chitosan isolated from Podophthalmus vigil. J Appl Pharm Sci 2(9):75–82Google Scholar
  194. Prajapati VD, Maheriya PM, Jani GK, Solanki HK (2014) Carrageenan: a natural seaweed polysaccharide and its applications. Carbohydr Polym 105:97–112PubMedCrossRefPubMedCentralGoogle Scholar
  195. Pranoto Y, Salokhe VM, Rakshit SK (2005) Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Res Int 38(3):267–272CrossRefGoogle Scholar
  196. Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62(3):373–380PubMedCrossRefPubMedCentralGoogle Scholar
  197. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465PubMedCrossRefPubMedCentralGoogle Scholar
  198. Ramos M, Jiménez A, Garrigós MC (2017) Active nanocomposites in food contact materials. In: Nanoscience in food and agriculture 4. Springer, pp 1–44Google Scholar
  199. Rao M, Kanatt S, Chawla S, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82(4):1243–1247CrossRefGoogle Scholar
  200. Raybaudi-Massilia RM, Mosqueda-Melgar J, Martín-Belloso O (2008) Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int J Food Microbiol 121(3):313–327PubMedCrossRefPubMedCentralGoogle Scholar
  201. Raybaudi-Massilia R, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O (2016) Combinational edible antimicrobial films and coatings. In: Antimicrobial food packaging. Elsevier, pp 633–646Google Scholar
  202. Realini CE, Marcos B (2014) Active and intelligent packaging systems for a modern society. Meat Sci 98(3):404–419PubMedCrossRefPubMedCentralGoogle Scholar
  203. Reinhard S, Herbert G (2007) Gelatin handbook: theory and industrial practice. Wiley-VCH Press, WeinheimGoogle Scholar
  204. Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N (2010) New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21(11):1425–1435CrossRefGoogle Scholar
  205. Rhim JW (2012) Physical-mechanical properties of agar/κ-carrageenan blend film and derived clay nanocomposite film. J Food Sci 77(12):N66–N73PubMedCrossRefPubMedCentralGoogle Scholar
  206. Rhim J-W, Ng PK (2007) Natural biopolymer-based nanocomposite films for packaging applications. Crit Rev Food Sci Nutr 47(4):411–433PubMedCrossRefPubMedCentralGoogle Scholar
  207. Rhim J-W, Hong S-I, Park H-M, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54(16):5814–5822PubMedCrossRefPubMedCentralGoogle Scholar
  208. Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10):1629–1652CrossRefGoogle Scholar
  209. Rinaudo M (1992) On the abnormal exponents a ν and a D in Mark Houwink type equations for wormlike chain polysaccharides. Polym Bull 27(5):585–589CrossRefGoogle Scholar
  210. Rodriguez-Aguilera R, Oliveira JC (2009) Review of design engineering methods and applications of active and modified atmosphere packaging systems. Food Eng Rev 1(1):66–83CrossRefGoogle Scholar
  211. Rouget C (1859) Des substances amylacees dans le tissue des animux, specialement les Articules (Chitine). Compt Rend 48:792–795Google Scholar
  212. Sabra W, Deckwer W-D (2005) Alginate—a polysaccharide of industrial interest and diverse biological functions. Polysacharides Struct Divers Funct Versat 2:515–533Google Scholar
  213. Samec M, Isajevič V (1922) Studien über Pflanzenkolloide, XIV. Fortschrittsberichte über Kolloide und Polymere 16(5):285–300Google Scholar
  214. Sathivel S, Liu Q, Huang J, Prinyawiwatkul W (2007) The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. J Food Eng 83(3):366–373CrossRefGoogle Scholar
  215. Scheuer PJ (2013) Marine natural products: chemical and biological perspectives. Academic Press, New YorkGoogle Scholar
  216. Schreiber SB, Bozell JJ, Hayes DG, Zivanovic S (2013) Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocoll 33(2):207–214CrossRefGoogle Scholar
  217. Seol K-H, Lim D-G, Jang A, Jo C, Lee M (2009) Antimicrobial effect of κ-carrageenan-based edible film containing ovotransferrin in fresh chicken breast stored at 5 C. Meat Sci 83(3):479–483PubMedCrossRefPubMedCentralGoogle Scholar
  218. Shahidi F (1996) Role of chemistry and biotechnology in value-added utilization of shellfish processing discards. ChemInform 27(15)Google Scholar
  219. Shankar S, Teng X, Li G, Rhim J-W (2015) Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocoll 45:264–271CrossRefGoogle Scholar
  220. Shankar S, Jaiswal L, Rhim J-W (2016) Gelatin-based nanocomposite films: potential use in antimicrobial active packaging. In: Antimicrobial food packaging. Elsevier, pp 339–348Google Scholar
  221. Shao X, Tu K, Tu S, Tu J (2012) A combination of heat treatment and chitosan coating delays ripening and reduces decay in “Gala” apple fruit. J Food Qual 35(2):83–92CrossRefGoogle Scholar
  222. Shen Z, Kamdem DP (2015) Development and characterization of biodegradable chitosan films containing two essential oils. Int J Biol Macromol 74:289–296PubMedCrossRefPubMedCentralGoogle Scholar
  223. Shimizu Y, Kamiya H (1983) Bioactive marine biopolymers. In: Scheuer PJ (ed) Marine natural products: chemical and biological perspectives, vol 5. Academic Press, p 391Google Scholar
  224. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, Hosseini SM, Khaksar R (2013) Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int J Biol Macromol 52:116–124PubMedCrossRefPubMedCentralGoogle Scholar
  225. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM, Khaksar R (2014) Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr Polym 101:582–591PubMedCrossRefPubMedCentralGoogle Scholar
  226. Silberbauer A, Schmid M (2017) Packaging concepts for ready-to-eat food: recent progress. J Packag Technol Res 1(3):113–126CrossRefGoogle Scholar
  227. Simic MG, Karel M (2013) Autoxidation in food and biological systems. SpringerGoogle Scholar
  228. Simões AD, Tudela JA, Allende A, Puschmann R, Gil MI (2009) Edible coatings containing chitosan and moderate modified atmospheres maintain quality and enhance phytochemicals of carrot sticks. Postharvest Biol Technol 51(3):364–370CrossRefGoogle Scholar
  229. Sipahi R, Castell-Perez M, Moreira R, Gomes C, Castillo A (2013) Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT Food Sci Technol 51(1):9–15CrossRefGoogle Scholar
  230. Siripatrawan U, Harte BR (2010) Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocoll 24(8):770–775CrossRefGoogle Scholar
  231. Siro I (2012) Active and intelligent packaging of food. In: Bhat R, Alias AK, Paliyath G (eds) Progress in food preservation. Wiley, Chichester, p 23CrossRefGoogle Scholar
  232. Sokolova E, Barabanova A, Homenko V, Solov’eva T, Bogdanovich R, Yermak I (2011) In vitro and ex vivo studies of antioxidant activity of carrageenans, sulfated polysaccharides from red algae. Bull Exp Biol Med 150(4):426–428PubMedCrossRefGoogle Scholar
  233. Soto-Valdez H, Auras R, Peralta E (2011) Fabrication of poly (lactic acid) films with resveratrol and the diffusion of resveratrol into ethanol. J Appl Polym Sci 121(2):970–978CrossRefGoogle Scholar
  234. Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Packag Shelf Life 8:63–70CrossRefGoogle Scholar
  235. Street H (2012) Gelatin handbook. Gelatin Handb 25Google Scholar
  236. Sun Y, Yang B, Wu Y, Liu Y, Gu X, Zhang H, Wang C, Cao H, Huang L, Wang Z (2015) Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem 178:311–318PubMedCrossRefGoogle Scholar
  237. Tahiri I, Desbiens M, Benech R, Kheadr E, Lacroix C, Thibault S, Ouellet D, Fliss I (2004) Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int J Food Microbiol 97(2):123–136PubMedCrossRefGoogle Scholar
  238. Tahiri I, Desbiens M, Lacroix C, Kheadr E, Fliss I (2009) Growth of Sarnobacterium divergens M35 and production of Divergicin M35 in snow crab by-product, a natural-grade medium. LWT Food Sci Technol 42(2):624–632CrossRefGoogle Scholar
  239. Talón E, Trifkovic KT, Nedovic VA, Bugarski BM, Vargas M, Chiralt A, González-Martínez C (2017) Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr Polym 157:1153–1161PubMedCrossRefGoogle Scholar
  240. Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137:360–374PubMedCrossRefGoogle Scholar
  241. Tezotto-Uliana JV, Fargoni GP, Geerdink GM, Kluge RA (2014) Chitosan applications pre-or postharvest prolong raspberry shelf-life quality. Postharvest Biol Technol 91:72–77CrossRefGoogle Scholar
  242. Thakur VK, Thakur MK (2016) Handbook of sustainable polymers: processing and applications. CRC PressGoogle Scholar
  243. Therkelsen GH (1993) Carrageenan. In: Whistler RL, BeMiller JN (eds) Industrial gums, polysaccharides and their derivatives. Academic Press, New York, pp 145–180Google Scholar
  244. Tongnuanchan P, Benjakul S, Prodpran T (2012) Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem 134(3):1571–1579PubMedCrossRefGoogle Scholar
  245. Tongnuanchan P, Benjakul S, Prodpran T (2013) Physico-chemical properties, morphology and antioxidant activity of film from fish skin gelatin incorporated with root essential oils. J Food Eng 117(3):350–360CrossRefGoogle Scholar
  246. Tongnuanchan P, Benjakul S, Prodpran T (2014) Structural, morphological and thermal behaviour characterisations of fish gelatin film incorporated with basil and citronella essential oils as affected by surfactants. Food Hydrocoll 41:33–43CrossRefGoogle Scholar
  247. Van de Velde F, De Ruiter GA (2005) Carrageenan. Biopolymers OnlineGoogle Scholar
  248. Van de Velde F, Knutsen S, Usov A, Rollema H, Cerezo A (2002) 1H and 13C high resolution NMR spectroscopy of carrageenans: application in research and industry. Trends Food Sci Technol 13(3):73–92CrossRefGoogle Scholar
  249. Varela P, Fiszman S (2011) Hydrocolloids in fried foods. A review. Food Hydrocoll 25(8):1801–1812CrossRefGoogle Scholar
  250. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, New York, pp 66–84Google Scholar
  251. Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769CrossRefGoogle Scholar
  252. Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281PubMedCrossRefGoogle Scholar
  253. Vermeiren L, Devlieghere F, Van Beest M, De Kruijf N, Debevere J (1999) Developments in the active packaging of foods. Trends Food Sci Technol 10(3):77–86CrossRefGoogle Scholar
  254. Vu K, Hollingsworth R, Leroux E, Salmieri S, Lacroix M (2011) Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Res Int 44(1):198–203CrossRefGoogle Scholar
  255. Wang SY, Gao H (2013) Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT Food Sci Technol 52(2):71–79CrossRefGoogle Scholar
  256. Wang J, Hu S, Nie S, Yu Q, Xie M (2016) Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Med Cell Longev 2016:5692852Google Scholar
  257. Weiner RM (1997) Biopolymers from marine prokaryotes. Trends Biotechnol 15(10):390–394PubMedCrossRefGoogle Scholar
  258. Williams PA, Campbell KT, Gharaviram H, Madrigal JL, Silva EA (2017) Alginate-chitosan hydrogels provide a sustained gradient of sphingosine-1-phosphate for Therapeutic Angiogenesis. Ann Biomed Eng 45(4):1003–1014PubMedCrossRefGoogle Scholar
  259. Wilson MD, Stanley RA, Eyles A, Ross T (2017) Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables. Crit Rev Food Sci Nutr:1–12Google Scholar
  260. Wu Y, Rhim J, Weller C, Hamouz F, Cuppett S, Schnepf M (2000) Moisture loss and lipid oxidation for precooked beef patties stored in edible coatings and films. J Food Sci 65(2):300–304CrossRefGoogle Scholar
  261. Wu Y, Weller C, Hamouz F, Cuppett S, Schnepf M (2001) Moisture loss and lipid oxidation for precooked ground-beef patties packaged in edible starch-alginate-based composite films. J Food Sci 66(3):486–493CrossRefGoogle Scholar
  262. Wu J, Ge S, Liu H, Wang S, Chen S, Wang J, Li J, Zhang Q (2014) Properties and antimicrobial activity of silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films incorporated with oregano essential oil for fish preservation. Food Packag Shelf Life 2(1):7–16CrossRefGoogle Scholar
  263. Wu J, Liu H, Ge S, Wang S, Qin Z, Chen L, Zheng Q, Liu Q, Zhang Q (2015) The preparation, characterization, antimicrobial stability and in vitro release evaluation of fish gelatin films incorporated with cinnamon essential oil nanoliposomes. Food Hydrocoll 43:427–435CrossRefGoogle Scholar
  264. Wu J, Sun X, Guo X, Ge S, Zhang Q (2017) Physicochemical properties, antimicrobial activity and oil release of fish gelatin films incorporated with cinnamon essential oil. Aquac Fish 2(4):185–192CrossRefGoogle Scholar
  265. Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11(13):1699–1701PubMedCrossRefGoogle Scholar
  266. Xing Y, Li X, Xu Q, Jiang Y, Yun J, Li W (2010) Effects of chitosan-based coating and modified atmosphere packaging (MAP) on browning and shelf life of fresh-cut lotus root (Nelumbo nucifera Gaerth). Innov Food Sci Emerg Technol 11(4):684–689CrossRefGoogle Scholar
  267. Yang J-I, Ho H-Y, Chu Y-J, Chow C-J (2008) Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chem 110(1):128–136PubMedCrossRefGoogle Scholar
  268. Yang J-S, Xie Y-J, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39CrossRefGoogle Scholar
  269. Ye M, Neetoo H, Chen H (2008) Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. Int J Food Microbiol 127(3):235–240PubMedCrossRefGoogle Scholar
  270. Yen M-T, Tseng Y-H, Li R-C, Mau J-L (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT Food Sci Technol 40(2):255–261CrossRefGoogle Scholar
  271. Yen M-T, Yang J-H, Mau J-L (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74(4):840–844CrossRefGoogle Scholar
  272. Youn S, Her J, Park S, Ahn D, Kim Y, Choi J (2004) Studies on the improvement of shelf-life in spicy beef meat using chitosan. J Korean Soc Food Sci Nutr 33(1):207–211CrossRefGoogle Scholar
  273. Yuan H, Zhang W, Li X, Lü X, Li N, Gao X, Song J (2005) Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr Res 340(4):685–692PubMedCrossRefGoogle Scholar
  274. Yuan H, Song J, Zhang W, Li X, Li N, Gao X (2006) Antioxidant activity and cytoprotective effect of κ-carrageenan oligosaccharides and their different derivatives. Bioorg Med Chem Lett 16(5):1329–1334PubMedCrossRefGoogle Scholar
  275. Zactiti E, Kieckbusch T (2006) Potassium sorbate permeability in biodegradable alginate films: effect of the antimicrobial agent concentration and crosslinking degree. J Food Eng 77(3):462–467CrossRefGoogle Scholar
  276. Zagory D, Kader AA (1988) Modified atmosphere packaging of fresh produce. Food Technol 42(9):70–77Google Scholar
  277. Zeuthen P, Bøgh-Sørensen L (2003) Food preservation techniques. ElsevierGoogle Scholar
  278. Zhang H, Wang M-L, Mao Y-T (2011) Advances in the application of chitosan coating in fresh-keeping of fruits and vegetables. J Guizhou Agric Sci 10:040Google Scholar
  279. Zhang B, Fang C-D, Hao G-J, Zhang Y-Y (2018) Effect of kappa-carrageenan oligosaccharides on myofibrillar protein oxidation in peeled shrimp (Litopenaeus vannamei) during long-term frozen storage. Food Chem 245:254–261PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed E. I. Badawy
    • 1
  • Entsar I. Rabea
    • 2
  1. 1.Department of Pesticide Chemistry and Technology, Faculty of AgricultureAlexandria UniversityAlexandriaEgypt
  2. 2.Department of Plant Protection, Faculty of AgricultureDamanhour UniversityDamanhourEgypt

Personalised recommendations