Advertisement

Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing

  • Pedro J. García-Moreno
  • Ana C. Mendes
  • Charlotte Jacobsen
  • Ioannis S. Chronakis
Chapter

Abstract

Electrohydrodynamic processing, including electrospinning and electrospraying, is an emerging technique for the encapsulation of bioactive ingredients (e.g. omega-3, vitamins, antioxidants, probiotics) with interest for the functional food industry. This chapter presents the fundamentals of electrohydrodynamic processes for the production of nano-microstructures (fibers or capsules) loaded with bioactive compounds. Particularly, it focuses on the properties as well as electrospinning and electrospray processing of food-grade polymers. The physicochemical characteristics of the resulting nano-microencapsulates will also be discussed. Electrospun and electrospray food-grade polymers include biopolymers such as proteins (e.g. zein, gelatin, whey, casein, amaranth, soy, egg and fish protein) and polysaccharides (e.g. pullulan, dextran, chitosan, starch, alginate, cellulose, cyclodextrin, xanthan gum), as well as blends of biopolymers with biocompatible synthetic polymers (e.g. poly-vinyl alcohol).

Keywords

Electrospinning Electrospraying Encapsulation Polysaccharides Proteins 

References

  1. Aceituno-Medina M, Lopez-Rubio A, Mendoza S, Lagaron JM (2013a) Development of novel ultrathin structures based in amaranth (amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocoll 31:289–298CrossRefGoogle Scholar
  2. Aceituno-Medina M, Mendoza S, Lagaron JM, López-Rubio A (2013b) Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends. Food Res Int 54:667–674CrossRefGoogle Scholar
  3. Aceituno-Medina M, Mendoza S, Lagaron JM, Lopez-Rubio A (2015a) Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate—Pullulan electrospun fibers. LWT Food Sci Technol 62:970–975CrossRefGoogle Scholar
  4. Aceituno-Medina M, Mendoza S, Rodríguez BA et al (2015b) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Foods 12:332–341CrossRefGoogle Scholar
  5. Alborzi S, Lim LT, Kakuda Y (2010) Electrospinning of sodium alginate-pectin ultrafine fibers. J Food Sci 75:100–107CrossRefGoogle Scholar
  6. Alborzi S, Lim L-T, Kakuda Y (2012) Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospun fibres. J Microencapsul 30:1–8Google Scholar
  7. Alborzi S, Lim L-T, Kakuda Y (2014) Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under in vitro conditions. LWT Food Sci Technol 59:383–388CrossRefGoogle Scholar
  8. Arya N, Chakraborty S, Dube N, Katti DS (2009) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res B Appl Biomater 88B:17–31CrossRefGoogle Scholar
  9. Augustin MA, Oliver CM (2014) Use of milk proteins for encapsulation of food ingredients. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 211–226Google Scholar
  10. Austero MS, Donius AE, Wegst UGK, Schauer CL (2012) New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis. J R Soc Interface 9:2551–2562PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balan V, Verestiuc L (2014) Strategies to improve chitosan hemocompatibility: a review. Eur Polym J 53:171–188CrossRefGoogle Scholar
  12. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bhattarai N, Edmondson D, Veiseh O et al (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184PubMedCrossRefPubMedCentralGoogle Scholar
  14. Blanco-Padilla A, López-Rubio A, Loarca-Piña G, Gómez-Mascaraque LG, Mendoza S (2015) Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT Food Sci Technol 63:1137–1144CrossRefGoogle Scholar
  15. Bocanegra R, Gaonkar AG, Barrero A, Loscertales IG, Pechack D, Marquez M (2005) Production of cocoa butter microcapsules using an electrospray process. J Food Sci 70:492–497CrossRefGoogle Scholar
  16. Bonino CA, Krebs MD, Saquing CD et al (2011) Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym 85:111–119CrossRefGoogle Scholar
  17. Celebioglu A, Uyar T (2010) Cyclodextrin nanofibers by electrospinning. Chem Commun (Camb) 46:6903–6905CrossRefGoogle Scholar
  18. Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27:6218–6226PubMedCrossRefPubMedCentralGoogle Scholar
  19. Celebioglu A, Uyar T (2013) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Interface Sci 404:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  20. Celebioglu A, Kayaci-Senirmak F, Kusku Sİ et al (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7:3141–3153PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen Z, Mo X, Qing F (2007) Electrospinning of collagen-chitosan complex. Mater Lett 61:3490–3494CrossRefGoogle Scholar
  22. Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process: a review. J Mater Process Technol 167:283–293CrossRefGoogle Scholar
  23. Chronakis IS (2010) Nano-microfibers by electrospinning technology: processing, properties and applications. In: Quin Y (ed) Micromanufacturing engineering and technology. Elsevier, Oxford, pp 264–286CrossRefGoogle Scholar
  24. Deng L, Kang X, Liu Y, Feng F, Zhang H (2017) Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem 231:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  25. Desai K, Kit K, Li J et al (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer (Guildf) 50:3661–3669CrossRefGoogle Scholar
  26. Devarayan K, Hanaoka H, Hachisu M et al (2013) Direct electrospinning of cellulose-chitosan composite nanofiber. Macromol Mater Eng 298:1059–1064Google Scholar
  27. Drosou C, Krokida M, Biliaderis CG (2018) Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocoll 77:726–735CrossRefGoogle Scholar
  28. El-Salam MHA, El-Shibiny S (2016) Natural biopolymers as. ElsevierGoogle Scholar
  29. Faria S, De Oliveira Petkowicz CL, De Morais SAL et al (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym 86:469–476CrossRefGoogle Scholar
  30. Fathi M, Martín Á, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39:18–39CrossRefGoogle Scholar
  31. Fernandez A, Torres-Giner S, Lagaron JM (2009) Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll 23:1427–1432CrossRefGoogle Scholar
  32. Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391CrossRefGoogle Scholar
  33. Fu R, Li C, Yu C et al (2015) A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv 7544:1–12Google Scholar
  34. Fuenmayor CA, Mascheroni E, Cosio MS et al (2013) Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chem Eng Trans 32:1771–1776Google Scholar
  35. García-Moreno PJ, Stephansen K, Van Der Kruijs J, Guadix A, Guadix EM, Chronakis IS, Jacobsen C (2016) Encapsulation of fish oil in nanofibers by emulsion electrospinning: physical characterization and oxidative stability. J Food Eng 183:39–49CrossRefGoogle Scholar
  36. García-Moreno PJ, Özdemir N, Stephansen K, Mateiu RV, Echegoyen Y, Lagaron JM, Chronakis IS, Jacobsen C (2017a) Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocoll 69:273–285CrossRefGoogle Scholar
  37. García-Moreno PJ, Damberg C, Chronakis IS, Jacobsen C (2017b) Oxidative stability of pullulan electrospun fibers containing fish oil: effect of oil content and natural antioxidants addition. Eur J Lipid Sci Technol 1600305:1–11Google Scholar
  38. García-Moreno PJ, Pelayo A, Yu S, Busolo M, Lagaron JM, Chronakis IS, Jacobsen C (2018) Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: combined use of whey protein and carbohydrates as wall materials. Food Hydrocoll 231:42–53Google Scholar
  39. Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432PubMedCrossRefPubMedCentralGoogle Scholar
  40. Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 51:227–240CrossRefGoogle Scholar
  41. Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Sci Emerg Technol 29:302–307CrossRefGoogle Scholar
  42. Gómez-Mascaraque LG, Lopez-Rubio A (2016) Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J Colloid Interface Sci 465:259–270PubMedCrossRefPubMedCentralGoogle Scholar
  43. Gómez-Mascaraque LG, Lagarón JM, López-Rubio A (2015) Electrosprayed gelatin submicrocapsules as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll 49:42–52CrossRefGoogle Scholar
  44. Gómez-Mascaraque LG, Morfin RC, Pérez-Masiá R, Sanchez G, Lopez-Rubio A (2016a) Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT Food Sci Technol 69:438–446CrossRefGoogle Scholar
  45. Gómez-Mascaraque LG, Sanchez G, López-Rubio A (2016b) Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydr Polym 150:121–130PubMedCrossRefPubMedCentralGoogle Scholar
  46. Gómez-Mascaraque LG, Perez-Masia R, Gonzalez-Barrio R, Jesus Periago M, Lopez-Rubio A (2017a) Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of beta-carotene. Food Hydrocoll 73:1–12CrossRefGoogle Scholar
  47. Gómez-Mascaraque LG, Hernández-Rojas M, Tarancón P, Tenon M, Feuillére N et al (2017b) Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract—enriched biscuits. LWT Food Sci Technol 81:77–86CrossRefGoogle Scholar
  48. Gudjónsdóttir M, Gacutan MD, Mendes AC et al (2015) Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis. Food Chem 184:167–175PubMedCrossRefPubMedCentralGoogle Scholar
  49. Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456CrossRefGoogle Scholar
  50. Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener Publisher, pp 185–232. 232. https://doi.org/10.1002/9781119364849.ch8. ISBN: 978-1-119-36350-7
  51. Gutiérrez TJ (2018) Processing nano- and microcapsules for industrial applications. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, pp. 989-1011. https://doi.org/10.1016/B978-0-12-813351-4.00057-2. ISBN: 978-0-12-813351-4
  52. Gutiérrez TJ, Álvarez K (2017) Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: Part 2. Bentham Science Publishers, pp 296–322.  https://doi.org/10.2174/9781681085449117010009. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9
  53. Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430.  https://doi.org/10.1007/s00289-016-1814-0CrossRefGoogle Scholar
  54. Gutiérrez TJ, Guarás MP, Alvarez VA (2017) Reactive extrusion for the production of starch-based biopackaging. In: Masuelli MA (ed) Biopackaging. CRC Press, Taylor & Francis Group, Miami, pp 287–315. ISBN: 978-1-4987-4968-8Google Scholar
  55. Hani NM, Torkamani AE, Azarian MH, Mahmood KWA, Ngalim SH (2017) Characterisation of electrospun gelatine nanofibres encapsulated with Moringa oleifera bioactive extract. J Sci Food Agric 97:3348–3358PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hu X, Liu S, Zhou G et al (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21PubMedCrossRefPubMedCentralGoogle Scholar
  57. Huang XJ, Chen PC, Huang F et al (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100CrossRefGoogle Scholar
  58. Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102–111PubMedCrossRefPubMedCentralGoogle Scholar
  59. Ignatova M, Manolova N, Rashkov I (2013) Electrospun antibacterial chitosan-based fibers. Macromol Biosci 13:860–872PubMedCrossRefPubMedCentralGoogle Scholar
  60. Jacobs IC (2014) Atomization and spray-drying processes. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 47–56Google Scholar
  61. Jacobsen C, García-Moreno PJ, Mendes AC, Mateiu RV, Chronakis IS (2018) Use of electrohydrodynamic processes for encapsulation of sensitive bioactive compounds and applications in food. Annu Rev Food Sci Technol 9:525–549PubMedCrossRefPubMedCentralGoogle Scholar
  62. Jayakumar R, Menon D, Manzoor K et al (2010a) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232CrossRefGoogle Scholar
  63. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010b) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jeannie Tan ZY, Zhang XW (2011) Influence of chitosan on electrospun PVA nanofiber mat. Adv Mater Res 311–313:1763–1768CrossRefGoogle Scholar
  65. Jiang HL, Fang DF, Hsiao BS, Chu B, Chen WL (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kang J, Kotaki M, Okubayashi S, Sukigara S (2010) Fabrication of electrospun eggshell membrane nanofibers by treatment with catechin. J Appl Polym Sci 117:2042–2049CrossRefGoogle Scholar
  67. Karim MR, Lee HW, Kim R et al (2009) Preparation and characterization of electrospun pullulan/montmorillonite nanofiber mats in aqueous solution. Carbohydr Polym 78:336–342CrossRefGoogle Scholar
  68. Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649CrossRefGoogle Scholar
  69. Kayaci F, Ertas Y, Uyar T (2013a) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165PubMedCrossRefPubMedCentralGoogle Scholar
  70. Kayaci F, Umu OCO, Tekinay T, Uyar T (2013b) Antibacterial electrospun poly(lactic acid) (PLA) nano fi brous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901−3908Google Scholar
  71. Kiechel MA, Schauer CL (2013) Non-covalent crosslinkers for electrospun chitosan fibers. Carbohydr Polym 95:123–133PubMedCrossRefPubMedCentralGoogle Scholar
  72. Kong L, Ziegler GR (2012) Role of molecular entanglements in starch fiber formation by electrospinning. Biomacromolecules 13:2247–2253PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kong L, Ziegler GR (2013) Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydr Polym 92:1416–1422PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kong L, Ziegler GR (2014a) Rheological aspects in fabricating pullulan fibers by electro-wet-spinning. Food Hydrocoll 38:220–226CrossRefGoogle Scholar
  75. Kong L, Ziegler GR (2014b) Fabrication of pure starch fibers by electrospinning. Food Hydrocoll 36:20–25CrossRefGoogle Scholar
  76. Kong L, Ziegler GR (2014c) Formation of starch-guest inclusion complexes in electrospun starch fibers. Food Hydrocoll 38:211–219CrossRefGoogle Scholar
  77. Lachke A (2004) Xanthan—a versatile gum. Resonance 9:25–33CrossRefGoogle Scholar
  78. Laelorspoen N, Wongsasulak S, Yoovidhya T, Devahastin S (2014) Microencapsulation of Lactobacillus acidophilus in zein-alginate core-shell microcapsules via electrospraying. J Funct Foods 7:342–349CrossRefGoogle Scholar
  79. Lancuški A, Vasilyev G, Putaux JL, Zussman E (2015) Rheological properties and electrospinnability of high-amylose starch in formic acid. Biomacromolecules 16:2529–2536PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lancuški A, Abu Ammar A, Avrahami R et al (2017) Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym 158:68–76PubMedCrossRefPubMedCentralGoogle Scholar
  81. Lee KY, Jeong L, Kang YOO et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032PubMedCrossRefPubMedCentralGoogle Scholar
  82. Li L, Hsieh YL (2006) Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res 341:374–381PubMedCrossRefPubMedCentralGoogle Scholar
  83. Li J, He A, Zheng J, Han CC (2006) Gelatin and gelatin—hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 7:2243–2247PubMedCrossRefPubMedCentralGoogle Scholar
  84. Li Y, Lim LT, Kakuda Y (2009) Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate. J Food Sci 74:C233–C240PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li J, Chotiko A, Narcisse DA, Sathivel S (2016a) Evaluation of alpha-tocopherol stability in soluble dietary fiber based nanofiber. LWT Food Sci Technol 68:485–490CrossRefGoogle Scholar
  86. Li H, Wang M, Williams GR, Wu J, Sun X, Lv Y, Zhu LM (2016b) Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv 6:50267–50277CrossRefGoogle Scholar
  87. Librán CM, Castro S, Lagaron JM (2016) Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Sci Emerg Technol 39:216–222CrossRefGoogle Scholar
  88. Lim LT (2015) Encapsulation of bioactive compounds using electrospinning and electrospraying technologies. In Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, ed. CM Sabliov, H Chen, RY Yada, pp. 297–317. New York: Wiley.Google Scholar
  89. Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81CrossRefGoogle Scholar
  90. Lopez-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Sci Emerg Technol 13:200–206CrossRefGoogle Scholar
  91. López-Rubio A, Sanchez E, Wilkanowicz S et al (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll 28:159–167CrossRefGoogle Scholar
  92. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367PubMedCrossRefPubMedCentralGoogle Scholar
  93. Ma G, Liu Y, Fang D et al (2012) Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater Lett 74:78–80CrossRefGoogle Scholar
  94. McClements DJ (2015) Nanoparticle- and microparticle-based delivery systems—encapsulation, proteciton and release of active compounds. CRC Press, Boca Raton, pp 265–339Google Scholar
  95. Mendes AC, Baran ET, Pereira RC et al (2012) Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative. Macromol Biosci 12:350–359PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mendes AC, Gorzelanny C, Halter N et al (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510:48–56PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mendes AC, Stephansen K, Chronakis IS (2017) Electrospinning of food proteins and polysaccharides. Food Hydrocoll 68:53–68CrossRefGoogle Scholar
  98. Meng Y, Cloutier S (2014) Gelatin and other proteins for microencapsulation. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 227–239Google Scholar
  99. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205:2327–2338CrossRefGoogle Scholar
  100. Moomand K, Lim LT (2014) Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Res Int 62:523–532CrossRefGoogle Scholar
  101. Moomand K, Lim LT (2015) Effects of solvent and n-3 rich fish oil on physicochemical properties of electrospun zein fibres. Food Hydrocoll 46:191–200CrossRefGoogle Scholar
  102. Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D (2013) Encapsulation food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chem 136:1013–1021PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nie H, He A, Zheng J et al (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9:1362–1365PubMedCrossRefPubMedCentralGoogle Scholar
  104. Nieuwland M, Geerdink P, Brier P, van den Eijnden P, Henket JTM, Langelaan MLP, Stroeks N, van Deventer HC, Martin AH (2013) Food-grade electrospinning of proteins. Innovative Food Sci Emerg Technol 20:269–275CrossRefGoogle Scholar
  105. Ohkawa K, Cha D, Kim H et al (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605CrossRefGoogle Scholar
  106. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll 39:19–26CrossRefGoogle Scholar
  107. Pakravan M, Heuzey M-C, Ajji A (2012) Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13:412–421PubMedCrossRefPubMedCentralGoogle Scholar
  108. Park WH, Jeong L, Il YD, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer (Guildf) 45:7151–7157CrossRefGoogle Scholar
  109. Pelayo A (2017) Production, characterization and oxidative stability of fish oil-loaded nanocapsules and yoghurt fortified with the nanocapsules. Master thesis, Technical University of DenmarkGoogle Scholar
  110. Pérez-Masiá R, Lagaron JM, López-Rubio A (2014a) Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food Bioprocess Technol 7:3236–3245CrossRefGoogle Scholar
  111. Pérez-Masiá R, Lagaron JM, Lopez-Rubio A (2014b) Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying. Food Bioprocess Technol 8:459–470CrossRefGoogle Scholar
  112. Pérez-Masiá R, López-Nicolás R, Periago MJ et al (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133PubMedCrossRefGoogle Scholar
  113. Pitigraisorn P, Srichaisupakit K, Wongpadungkiat N, Wongsasulak S (2017) Encapsulation of lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. J Food Eng 192:11–18CrossRefGoogle Scholar
  114. Reddy N, Yang Y (2015) Innovative biofibers from renewable resources. Springer, New YorkCrossRefGoogle Scholar
  115. Rezaei A, Nasirpour A, Fathi M (2015) Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk. Compr Rev Food Sci Food Saf 14:269–284CrossRefGoogle Scholar
  116. Ritcharoen W, Thaiying Y, Saejeng Y et al (2008) Electrospun dextran fibrous membranes. Cellulose 15:435–444CrossRefGoogle Scholar
  117. Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzym Microb Technol 39:197–207CrossRefGoogle Scholar
  118. Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714PubMedCrossRefPubMedCentralGoogle Scholar
  119. Schiffman JD, Schauer CL (2007) One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules 8:2665–2667PubMedCrossRefPubMedCentralGoogle Scholar
  120. Shalumon KT, Anulekha KH, Girish CM et al (2010) Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym 80:414–420CrossRefGoogle Scholar
  121. Shekarforoush E, Mendes ACL, Baj V, Beeren SR, Chronakis IS (2017a) Electrospun phospholipid fibers as micro-encapsulation and antioxidant matrices. Molecules 22:1708CrossRefGoogle Scholar
  122. Shekarforoush E, Faralli A, Ndoni S et al (2017b) Electrospinning of xanthan polysaccharide. Macromol Mater Eng 201700067:1700067CrossRefGoogle Scholar
  123. Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192CrossRefGoogle Scholar
  124. Sobel R, Versic R, Gaonkar AG (2014) Introduction to microencapsulation and controlled delivery in foods. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 3–12Google Scholar
  125. Songchotikunpan P, Tattiyakul J, Supaphol P (2008) Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol 42:247–255PubMedCrossRefPubMedCentralGoogle Scholar
  126. Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N (2011) Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res 34:583–592PubMedCrossRefPubMedCentralGoogle Scholar
  127. Spano F, Massaro A (2012) Electrospun dextran-based nanofibers for biosensing and biomedical applications. Acad Res J 1:23–30Google Scholar
  128. Sreekumar S, Lemke P, Moerschbacher BM et al (2017) Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:1795–1806PubMedCrossRefPubMedCentralGoogle Scholar
  129. Stephansen K, Chronakis IS, Jessen F (2014) Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system. Colloids Surf B Biointerfaces 122:158–165PubMedCrossRefPubMedCentralGoogle Scholar
  130. Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen H (2015) Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. Int J Pharm 495:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  131. Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen HM (2016) Interactions between surfactants in solution and electrospun protein fibers: effects on release behavior and fiber properties. Mol Pharm 13:748–755PubMedCrossRefPubMedCentralGoogle Scholar
  132. Stijnman AC, Bodnar I, Hans Tromp R (2011) Electrospinning of food-grade polysaccharides. Food Hydrocoll 25:1393–1398CrossRefGoogle Scholar
  133. Suárez G, Gutiérrez TJ (2017) Recent advances in the development of biodegadable films and foams from cassava starch. In: Klein C (ed) Handbook on cassava: production, potential uses and recent advances. Nova Science Publishers, New York, pp 297–312. ISBN: 978-1-53610-307-6Google Scholar
  134. Sullivan ST, Tang C, Kennedy A, Talwar S, Khan SA (2014) Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll 35:36–50CrossRefGoogle Scholar
  135. Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5:342–361CrossRefGoogle Scholar
  136. Sun XB, Jia D, Kang WM et al (2013) Research on electrospinning process of pullulan nanofibers. Appl Mech Mater 268–270:198–201CrossRefGoogle Scholar
  137. Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 67:387–397PubMedCrossRefPubMedCentralGoogle Scholar
  138. Thien DVH, Hsiao SW, Ho MH (2012) Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano Life 2:1250003CrossRefGoogle Scholar
  139. Tomasula PM, Sousa AMM, Liou SC, Li R, Bonnaillie LM, Liu LS (2016) Short communication: electrospinning of casein/pullulan blends for food-grade application. J Dairy Sci 99:1837–1845PubMedCrossRefPubMedCentralGoogle Scholar
  140. Torres-Giner S, Ocio MJ, Lagaron JM (2008) Development of active antimicrobial fiber-based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 8:303–314CrossRefGoogle Scholar
  141. Torres-Giner S, Ocio MJ, Lagaron JM (2009) Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydr Polym 77:261–266CrossRefGoogle Scholar
  142. Torres-Giner S, Martinez-Abad A, Ocio MJ, Lagaron JM (2010) Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci 75:N69–N79PubMedCrossRefPubMedCentralGoogle Scholar
  143. Ungeheuer S, Bewersdorff H, Singh RP (1989) Turbulent drag effectiveness and shear stability of xanthan-gum-based graft copolymers. J Appl Polym Sci 37:2933–2948CrossRefGoogle Scholar
  144. Vega-Lugo AC, Lim LT (2009) Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res Int 42:933–940CrossRefGoogle Scholar
  145. Verdugo M, Lim LT, Rubilar M (2014) Electrospun protein concentrate fibers from microalgae residual biomass. J Polym Environ 22:373–383CrossRefGoogle Scholar
  146. Wang S, Bai J, Li C, Zhang J (2012) Functionalization of electrospun B-cyclodextrin/polyacrylonitrile (PAN) with silver nanoparticles: Broad-spectrum antibacterial property. Appl Surf Sci 261:499–503CrossRefGoogle Scholar
  147. Weiss J, Kanjanapongkul K, Wongsasulak S, Yoovidhya T (2012) Electrospun fibers: fabrication, functionalities and potential food industry applications. In: Huang Q (ed) Nanotechnology in the food, beverage and nutraceutical industries. Woodhead Publishing, Cambridge, pp 362–397CrossRefGoogle Scholar
  148. Wu X, Wang L, Yu H, Huang Y (2005) Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci 97:1292–1297CrossRefGoogle Scholar
  149. Xie JB, Hsieh YL (2003) Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci 38:2125–2133CrossRefGoogle Scholar
  150. Xu W, Yang W, Yang Y (2009) Electrospun starch acetate nanofibers: development, properties, and potential application in drug delivery. Biotechnol Prog 25:1788–1795PubMedCrossRefPubMedCentralGoogle Scholar
  151. Yang DZ, Li YN, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym 69:538–543CrossRefGoogle Scholar
  152. Yang H, Wen P, Feng K, Zong MH, Lou WY, Wu H (2017) Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties. RSC Adv 7:14939–14946CrossRefGoogle Scholar
  153. Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3:69–91CrossRefGoogle Scholar
  154. Zirnsak MA, Boger DV, Tirtaatmadja V (1999) Steady shear and dynamic rheological properties of xanthan gum solutions in viscous solvents. J Rheol (N Y N Y) 43:627CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Group for Bioactives—Analysis and Application, National Food InstituteTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Nano-Bio Science Research Group, National Food InstituteTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations