Food-Grade Biopolymers as Efficient Delivery Systems for Nutrients: An Overview

  • Lekshmi R. G. Kumar
  • K. K. Anas
  • C. S. Tejpal
  • Suseela Mathew


The technological advancements in the field of food and nutrition have made the development of functional foods/nutraceuticals an easier task. Globally, researchers are in the process of isolating biomolecules of potential health significance from natural sources and subjecting to various in vitro and in vivo assays to investigate its feasibility as a functional food ingredient. However, incorporation of many such biomolecules into food systems often faces difficulties owing to the issues associated with its stability, bioavailability and sustained release. Such problems can be easily addressed through the use of efficient delivery systems that guarantees the safety, stability and sustained release of the nutrients. Such delivery systems are often referred to as ‘encapsulation systems’. Till date, a wide variety of biopolymers such as proteins, polysaccharides, protein-polysaccharide conjugates, maillard products, natural gums, structurally modified polysaccharides etc. are being employed for delivery of nutrients. Reports says that the success of encapsulation to a greater extent depends on the prudent selection of food grade biopolymers which can deliver the nutrients effectively. In the present review, a comprehensive list of food grade biopolymers used as delivery systems for nutrients is discussed in detail.


Coacervates Electrospraying Encapsulation efficiency Functional foods Hydrogels Nanoliposomes 


  1. Aam BB (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abbasi A, Emam-Djomeh Z, Mousavi MAE, Davoodi D (2014) Stability of vitamin D 3 encapsulated in nanoparticles of whey protein isolate. Food Chem 143:379–383PubMedCrossRefPubMedCentralGoogle Scholar
  3. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15CrossRefGoogle Scholar
  4. Aditya NP, Macedo AS, Doktorovova S, Souto EB, Kim S, Chang PS, Ko S (2014) Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT Food Sci Technol 59(1):115–121CrossRefGoogle Scholar
  5. Aguilar F, Charrondiere UR, Dusemund B, Galtier P, Gilbert J, Gott DM (2010) Scientific opinion on the use of Gum Acacia modified with Octenyl Succinic Anhydride (OSA) as a food additive. EFSA J 8(3):1–23Google Scholar
  6. Ahmad SI, Mazumdar N, Kumar S (2013) Functionalization of natural gum: an effective method to prepare iodine complex. Carbohydr Polym 92(1):497–502PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alencastre JB, Bentley MVLB, Garcia FS, Moragas MD, Viladot JL, Marchetti JM (2006) A study of the characteristics and in vitro permeation properties of CMC/chitosan microparticles as a skin delivery system for vitamin E. Rev Bras Ciênc Farm 42(1):69–76CrossRefGoogle Scholar
  8. Almeida AJ, Souto E (2007) Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv Drug Deliv Rev 59(6):478–490PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anton N, Saulnier P, Beduneau A, Benoit JP (2007) Salting-out effect induced by temperature cycling on a water/nonionic surfactant/oil system. J Phys Chem B 111(14):3651–3657PubMedCrossRefPubMedCentralGoogle Scholar
  10. Arnaud JP (1995) Pro-liposomes for the food industry. Food Technol Europe 2:30–34Google Scholar
  11. Augustin MA (2003) The role of microencapsulation in the development of functional dairy foods. Aust J Dairy Technol 58(2):156Google Scholar
  12. Augustin MA, Hemar Y (2009) Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38(4):902–912PubMedCrossRefGoogle Scholar
  13. Aumelas A, Serrero A, Durand A, Dellacherie E, Leonard M (2007) Nanoparticles of hydrophobically modified dextrans as potential drug carrier systems. Colloids Surf B: Biointerfaces 59(1):74–80PubMedCrossRefPubMedCentralGoogle Scholar
  14. Aytekin AO, Morimura S, Kida K (2011) Synthesis of chitosan–caffeic acid derivatives and evaluation of their antioxidant activities. J Biosci Bioeng 111:212–216PubMedCrossRefPubMedCentralGoogle Scholar
  15. Badrul HZ, Wong TW, Halimaton H (2018) Design of low molecular weight pectin and its nanoparticles through combination treatment of pectin by microwave and inorganic salts. Polym Degrad Stab 147:35–40CrossRefGoogle Scholar
  16. Baldwin AD, Kiick KL (2010) Polysaccharide modified synthetic polymeric biomaterials. J Pept Sci 94(1):128–140CrossRefGoogle Scholar
  17. Baranauskienė R, Bylaitė E, Žukauskaitė J, Venskutonis RP (2007) Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. J Agric Food Chem 55(8):3027–3036PubMedCrossRefPubMedCentralGoogle Scholar
  18. Barsby TL, Donald AM, Frazier PJ (2001) Starch: advances in structure and function. Royal Society of Chemistry, CambridgeCrossRefGoogle Scholar
  19. Benshitrit RC, Levi CS, Tal SL, Shimoni E, Lesmes U (2012) Development of oral food-grade delivery systems: current knowledge and future challenges. Food Funct 3(1):10–21PubMedCrossRefPubMedCentralGoogle Scholar
  20. Blasco C, Pico Y (2011) Determining nanomaterials in food. TrAC Trends Anal Chem 30(1):84–99CrossRefGoogle Scholar
  21. Boon CS, McClements DJ, Weiss J, Decker EA (2010) Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr 50(6):515–532PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brandelli A, Daroit DJ, Corrêa APF (2015) Whey as a source of peptides with remarkable biological activities. Food Res Int 73:149–161CrossRefGoogle Scholar
  23. Cerqueira MA, Pinheiro AC, Silva HD, Ramos PE, Azevedo MA, Flores-López ML, Rivera MC, Bourbon AI, Ramos OL, Vicente AA (2014) Design of bio-nanosystems for oral delivery of functional compounds. Food Eng Rev 6(1–2):1–19CrossRefGoogle Scholar
  24. Chang C, Wang T, Hu Q, Luo Y (2017) Zein/caseinate/pectin complex nanoparticles: formation and characterization. Int J Biol Macromol 104(Pt A):117–124PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chapeau AL, Bertrand N, Briard-Bion V, Hamon P, Poncelet D, Bouhallab S (2017) Coacervates of whey proteins to protect and improve the oral delivery of a bioactive molecule. J Funct Foods 38:197–204CrossRefGoogle Scholar
  26. Chatterjee NS, Anandan R, Navitha M, Asha KK, Kumar KA, Mathew S, Ravishankar CN (2016) Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation. J Food Sci Technol 53(1):551–560PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chen L, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283CrossRefGoogle Scholar
  28. Chen CC, Tsai TH, Huang ZR, Fang JY (2010) Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm 74(3):474–482PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cho YS, Kim SB, Ahn CB, Je JY (2011) Preparation characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr Polym 83:1617–1622CrossRefGoogle Scholar
  30. Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR (2017) Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. Int J Biol Macromol 97:536–543PubMedCrossRefPubMedCentralGoogle Scholar
  31. Dai L, Sun C, Li R, Mao L, Liu F, Gao Y (2017) Structural characterization, formation mechanism and stability of curcumin in zein-lecithin composite nanoparticles fabricated by antisolvent co-precipitation. Food Chem 237:1163–1171PubMedCrossRefPubMedCentralGoogle Scholar
  32. Daniel-da-Silva AL, Trindade T (2011) Biofunctional composites of polysaccharides containing inorganic nanoparticles. Advances in nanocomposite technology. InTech, Sheffield, pp 275–298Google Scholar
  33. Davidov-Pardo G, Joye IJ, McClements DJ (2015) Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: preparation and characterization. Food Hydrocoll 45:309–316CrossRefGoogle Scholar
  34. Deng L, Kang X, Liu Y, Feng F, Zhang H (2017) Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem 231:70–77PubMedCrossRefPubMedCentralGoogle Scholar
  35. Dickinson E (2008) Interfacial structure and stability of food emulsions as affected by protein–polysaccharide interactions. Soft Matter 4(5):932–942CrossRefGoogle Scholar
  36. Dickinson A, MacKay D (2014) Health habits and other characteristics of dietary supplement users: a review. Nutr J 13(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  37. Donsì F, Voudouris P, Veen SJ, Velikov KP (2017) Zein-based colloidal particles for encapsulation and delivery of epigallocatechin gallate. Food Hydrocoll 63:508–517CrossRefGoogle Scholar
  38. Drosou C, Krokida M, Biliaderis CG (2018) Composite pullulan-whey protein nanofibers made by electrospinning: impact of process parameters on fiber morphology and physical properties. Food Hydrocoll 77:726–735CrossRefGoogle Scholar
  39. Dufour P, Laloy E, Vuillemard JC, Simard R (1996) Liposomes in cheesemaking. In: Lasic D, Barenholz Y (eds) Handbook of nonmedical applications of liposomes. CRC Press, Boca RatonGoogle Scholar
  40. Duran N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1113CrossRefGoogle Scholar
  41. Dutta RK, Sahu S (2012) Development of diclofenac sodium loaded magnetic nanocarriers of pectin interacted with chitosan for targeted and sustained drug delivery. Colloids Surf B: Biointerfaces 97:19–26PubMedCrossRefPubMedCentralGoogle Scholar
  42. Elzoghby AO, Samy WM, Elgindy NA (2012) Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release 157(2):168–182PubMedCrossRefPubMedCentralGoogle Scholar
  43. Falco CY, Falkman P, Risbo J, Cárdenas M, Medronho B (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172:175–183CrossRefGoogle Scholar
  44. Fan Y, Yi J, Zhang Y, Yokoyama W (2018) Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity. Food Chem 239:1210–1218PubMedCrossRefPubMedCentralGoogle Scholar
  45. Fang Y, Al-Assaf S, Phillips GO, Nishinari K, Funami T, Williams PA, Li L (2007) Multiple steps and critical behaviors of the binding of calcium to alginate. J Phys Chem B 111(10):2456–2462PubMedCrossRefPubMedCentralGoogle Scholar
  46. Fathi M, Varshosaz J (2013) Novel hesperetin loaded nanostructure lipid carriers coated by different carbohydrate for food fortification: production and characterization. J Funct Foods 5:1382–1391CrossRefGoogle Scholar
  47. Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23(1):13–27CrossRefGoogle Scholar
  48. Fathi M, Martín Á, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39(1):18–39CrossRefGoogle Scholar
  49. Flores FP, Singh RK, Kong F (2014) Physical and storage properties of spray-dried blueberry pomace extract with whey protein isolate as wall material. J Food Eng 137:1–6CrossRefGoogle Scholar
  50. García-Saldaña JS, Campas-Baypoli ON, López-Cervantes J, Sánchez-Machado DI, Cantú-Soto EU, Rodríguez-Ramírez R (2016) Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes. Food Chem 201:94–100PubMedCrossRefPubMedCentralGoogle Scholar
  51. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 114(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  52. Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innov Food Sci Emerg Technol 29:302–307CrossRefGoogle Scholar
  53. Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J, López-Caballero E, Giménez B, Montero P (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Technol 20(1):3–16CrossRefGoogle Scholar
  54. Gómez-Mascaraque LG, Lagarón JM, López-Rubio A (2015) Electro sprayed gelatine submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll 49:42–52CrossRefGoogle Scholar
  55. Gonnet M, Lethuaut L, Boury F (2010) New trends in encapsulation of liposoluble vitamins. J Control Release 146(3):276–290PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gulão EDS, de Souza CJ, da Silva FA, Coimbra JS, Garcia-Rojas EE (2014) Complex coacervates obtained from lactoferrin and gum arabic: formation and characterization. Food Res Int 65:367–374CrossRefGoogle Scholar
  57. Gunasekaran S, Ko S, Xiao L (2007) Use of whey proteins for encapsulation and controlled delivery applications. J Food Eng 83(1):31–40CrossRefGoogle Scholar
  58. Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener Publisher, pp 185–232. EE.UU. ISBN: 978-1-119-36350-7Google Scholar
  59. Gutiérrez TJ (2018) Processing of nano- and microcapsules for industrial applications. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, pp 989-1011. EE.UU. ISBN: 978-0-12-813351-4Google Scholar
  60. Gutiérrez TJ, Álvarez K (2017) Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 2. Bentham Science Publishers, pp 296–322. EE.UU. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9
  61. Gutiérrez JM, González C, Maestro A, Sole I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13(4):245–251CrossRefGoogle Scholar
  62. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8. Scholar
  63. Gutiérrez TJ, Ollier R, Alvarez VA (2018) Surface properties of thermoplastic starch materials reinforced with natural fillers. In: Thakur VK, Thakur MK (eds) Functional biopolymers. Editorial Springer International Publishing, pp 131–158. EE.UU. ISBN: 978-3-319-66416-3. eISBN: 978-3-319-66417-0
  64. Harde H, Das M, Jain S (2011) Solid lipid nanoparticles: an oral bioavailability enhancer vehicle. Expert Opin Drug Deliv 8(11):1407–1424PubMedCrossRefPubMedCentralGoogle Scholar
  65. Hasegawa M, Isogai A, Onabe F (1993) Preparation of low molecular weight chitosan using phosphoric acid. Carbohydr Polym 20:279–283CrossRefGoogle Scholar
  66. Heger M, van Golen RF, Broekgaarden M, Michel MC (2014) The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev 66(1):222–307PubMedCrossRefPubMedCentralGoogle Scholar
  67. Henry JV, Fryer PJ, Frith WJ, Norton IT (2010) The influence of phospholipids and food proteins on the size and stability of model sub-micron emulsions. Food Hydrocoll 24(1):66–71CrossRefGoogle Scholar
  68. Hu B, Wang Y, Xie M, Hu G, Ma F, Zeng X (2015) Polymer nanoparticles composed with gallic acid grafted chitosan and bioactive peptides combined antioxidant, anticancer activities and improved delivery property for labile polyphenols. J Funct Foods 15:593–603CrossRefGoogle Scholar
  69. Hu Y, Li Y, Zhang W, Kou G, Zhou Z (2018) Physical stability and antioxidant activity of citrus flavonoids in arabic gum-stabilized microcapsules: modulation of whey protein concentrate. Food Hydrocoll 77:588–597CrossRefGoogle Scholar
  70. Ilyina AV, Tikhonov VE, Albulov AI, Varlamov VP (2000) Enzymic preparation of acidfree-water-soluble chitosan. Process Biochem 35:563–568CrossRefGoogle Scholar
  71. Jain R, Dandekar P, Loretz B, Melero A, Stauner T, Wenz G (2011) Enhanced cellular delivery of idarubicin by surface modification of propyl starch nanoparticles employing pteroic acid conjugated polyvinyl alcohol. Int J Pharm 420:147–155PubMedCrossRefPubMedCentralGoogle Scholar
  72. Jeon YJ, Shahidi F, Kim SK (2000) Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev Int 16:159–176CrossRefGoogle Scholar
  73. Josef E, Zilberman M, Bianco-Peled H (2010) Composite alginate hydrogels: an innovative approach for the controlled release of hydrophobic drugs. Acta Biomater 6(12):4642–4649PubMedCrossRefPubMedCentralGoogle Scholar
  74. Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol 40(2):168–182CrossRefGoogle Scholar
  75. Joye IJ, Davidov-Pardo G, Ludescher RD, McClements DJ (2015) Fluorescence quenching study of resveratrol binding to zein and gliadin: towards a more rational approach to resveratrol encapsulation using water-insoluble proteins. Food Chem 185:261–267PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kaewprapan K, Inprakhon P, Marie E, Durand A (2012) Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems. Carbohydr Polym 88(3):875–881CrossRefGoogle Scholar
  77. Kalepu S, Manthina M, Padavala V (2013) Oral lipid-based drug delivery systems–an overview. Acta Pharm Sin B 3(6):361–372CrossRefGoogle Scholar
  78. Kanakdande D, Bhosale R, Singhal RS (2007) Stability of cumin oleoresin microencapsulated in different combination of gum arabic, maltodextrin and modified starch. Carbohydr Polym 67(4):536–541CrossRefGoogle Scholar
  79. Kimura A, Kabasawa Y, Tabata Y, Aoki K, Ohya K, Omura K (2014) Gelatin hydrogel as a carrier of recombinant human fibroblast growth factor-2 during rat mandibular distraction. J Oral Maxillofac Surg 72(10):2015–2031PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kosaraju SL (2005) Colon targeted delivery systems: review of polysaccharides for encapsulation and delivery. Crit Rev Food Sci Nutr 45(4):251–258PubMedCrossRefPubMedCentralGoogle Scholar
  81. Krishnan S, Bhosale R, Singhal RS (2005) Microencapsulation of cardamom oleoresin: evaluation of blends of gum arabic, maltodextrin and a modified starch as wall materials. Carbohydr Polym 61(1):95–102CrossRefGoogle Scholar
  82. Kuck LS, Noreña CPZ (2016) Microencapsulation of grape (Vitislabrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem 194:569–576PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lai JY (2013) Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery. J Mater Sci Mater Med 24(9):2201–2210PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lekshmi RGK, Chatterjee NS, Tejpal CS, Vishnu KV, Anas KK, Asha KK, Anandan R, Mathew S (2017) Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: characterization and oxidative stability studies. Int J Biol Macromol 104:1986–1995CrossRefGoogle Scholar
  87. Leon AM, Medina WT, Park DJ, Aguilera JM (2016) Mechanical properties of whey protein/Na alginate gel microparticles. J Food Eng 188:1–7CrossRefGoogle Scholar
  88. Li K, Xing R, Liu S, Qin Y, Li B, Wang X, Li P (2012) Separation and scavenging superoxide radical activity of chitooligomers with degree of polymerization 6–16. Int J Biol Macromol 51:826–830PubMedCrossRefPubMedCentralGoogle Scholar
  89. Liang RH, Chen J, Liu W, Liu CM, Yu W, Yuan M, Zhou XQ (2012) Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus pumila Linn.) seeds. Carbohydr Polym 87(1):76–83CrossRefGoogle Scholar
  90. Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, Wan X (2017) Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem 231:19–24PubMedCrossRefPubMedCentralGoogle Scholar
  91. Liang Q, Ren X, Zhang X, Hou T, Chalamaiah M, Ma H, Xu B (2018) Effect of ultrasound on the preparation of resveratrol-loaded zein particles. J Food Eng, 221:88–94Google Scholar
  92. Liu Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662PubMedCrossRefPubMedCentralGoogle Scholar
  93. Liu W, Sun D, Li C, Liu Q, Xu J (2006) Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. J Colloid Interface Sci 303(2):557–563PubMedCrossRefPubMedCentralGoogle Scholar
  94. Liu GY, Wang JM, Xia Q (2012) Application of nanostructured lipid carrier in food for the improved bioavailability. Eur Food Res Technol 234(3):391–398CrossRefGoogle Scholar
  95. Lodhi G, Kim YS, Hwang JW, Kim SK, Jeon YJ, Je JY, Ahn CB, Moon SH, Jeon BT, Park PJ (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res Int 2014:654913PubMedPubMedCentralGoogle Scholar
  96. Loksuwan J (2007) Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll 21(5):928–935CrossRefGoogle Scholar
  97. López-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Sci Emerg Technol 13:200–206CrossRefGoogle Scholar
  98. Loveday SM, Su J, Rao MA, Anema SG, Singh H (2012) Whey protein nanofibrils: kinetic, rheological and morphological effects of group IA and IIA cations. Int Dairy J 26(2):133–140CrossRefGoogle Scholar
  99. Luo Y (2014) Nutrient delivery systems: the future strategy for chronic diseases. Austin J Nutr Food Sci 2(9):1049Google Scholar
  100. Luo Y, Pan K, Zhong Q (2015) Casein/pectin nanocomplexes as potential oral delivery vehicles. Int J Pharm 486(1):59–68PubMedCrossRefPubMedCentralGoogle Scholar
  101. Luykx DM, Peters RJ, van Ruth SM, Bouwmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247PubMedCrossRefPubMedCentralGoogle Scholar
  102. Mader K, Mehnert W (2005) Solid Lipid nanoparticles—concepts, procedures, and physicochemical aspects. In: Lipospheres in drug targets and delivery. CRC PressGoogle Scholar
  103. Malheiros PS, Daroit DJ, Silveira NP, Brandelli A (2010) Effect of nanovesicle-encapsulated nisin on growth of Listeria monocytogenes in milk. Food Microbiol 27:175–178CrossRefGoogle Scholar
  104. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18:R635–R666CrossRefGoogle Scholar
  105. Masuelli MA (2013) Hydrodynamic properties of whole arabic gum. Am J Food Sci Technol 1(3):60–66Google Scholar
  106. McClements DJ (2015) Nanoscale nutrient delivery systems for food applications: improving bioactive dispersibility, stability, and bioavailability. J Food Sci 80(7):N1602–N1611PubMedCrossRefPubMedCentralGoogle Scholar
  107. McClements DJ, Decker EA (2000) Lipid oxidation in oil in water emulsions: impact of molecular environment on chemical reactions in heterogeneous food systems. J Food Sci 65(8):1270–1282CrossRefGoogle Scholar
  108. McClements DJ, Decker EA, Weiss J (2007) Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72(8):R109–R124PubMedCrossRefPubMedCentralGoogle Scholar
  109. McClements DJ (2012) Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv Colloid Interface Sci 174:1–30.Google Scholar
  110. Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4(10):729–740PubMedCrossRefPubMedCentralGoogle Scholar
  111. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277PubMedCrossRefPubMedCentralGoogle Scholar
  112. Mourtzinos I, Kalogeropoulos N, Papadakis SE, Konstantinou K, Karathanos VT (2008) Encapsulation of nutraceutical monoterpenes in β-cyclodextrin and modified starch. J Food Sci 73(1):S89–S94PubMedCrossRefPubMedCentralGoogle Scholar
  113. Mozafari MR (2006) Nanocarrier technologies: frontiers of nanotherapy. Springer, Dordrecht, p 225CrossRefGoogle Scholar
  114. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327PubMedCrossRefPubMedCentralGoogle Scholar
  115. Mukherjee S, Ray S, Thakur RS (2009) Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci 71(4):349PubMedPubMedCentralCrossRefGoogle Scholar
  116. Muller RH, Dingler A, Schneppe T, Gohla S (2000) Largescale production of solid lipid nanoparticles (SLN) and nanosuspensions. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. CRC Press, New York, pp 377–392Google Scholar
  117. Murúa-Pagola B, Beristain-Guevara CI, Martínez-Bustos F (2009) Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying. J Food Eng 91(3):380–386CrossRefGoogle Scholar
  118. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRefGoogle Scholar
  119. Nayak AK, Das B, Maji R (2012) Calcium alginate/gum Arabic beads containing glibenclamide: development and in vitro characterization. Int J Biol Macromol 51(5):1070–1078PubMedCrossRefPubMedCentralGoogle Scholar
  120. O’Neill GJ, Egan T, Jacquier JC, O’Sullivan M, O’Riordan ED (2014) Whey microbeads as a matrix for the encapsulation and immobilisation of riboflavin and peptides. Food Chem 160:46–52PubMedCrossRefPubMedCentralGoogle Scholar
  121. Onoue S (2012) Novel solid self-emulsifying drug delivery system of coenzyme Q10 with improved photochemical and pharmacokinetic behaviors. Eur J Pharm Sci 46(5):492–499PubMedCrossRefPubMedCentralGoogle Scholar
  122. Ozel B, Cikrikci S, Aydin O, Oztop MH (2017) Polysaccharide blended whey protein isolate-(WPI) hydrogels: a physicochemical and controlled release study. Food Hydrocoll 71:35–46CrossRefGoogle Scholar
  123. Pandita D (2014) Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int 62:1165–1174CrossRefGoogle Scholar
  124. Paraskevopoulou A, Amvrosiadou S, Biliaderis CG, Kiosseoglou V (2014) Mixed whey protein isolate-egg yolk or yolk plasma heat-set gels: rheological and volatile compounds characterisation. Food Res Int 62:492–499CrossRefGoogle Scholar
  125. Patel S (2015) Functional food relevance of whey protein: a review of recent findings and scopes ahead. J Funct Foods 19:308–319CrossRefGoogle Scholar
  126. Patel A, Hu Y, Tiwari JK, Velikov KP (2010) Synthesis and characterisation of zein–curcumin colloidal particles. Soft Matter 6(24):6192–6199CrossRefGoogle Scholar
  127. Peña C, De La Caba KORO, Eceiza A, Ruseckaite R, Mondragon I (2010) Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour Technol 101(17):6836–6842PubMedCrossRefPubMedCentralGoogle Scholar
  128. Qv XY, Zeng ZP, Jiang JG (2011) Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocoll 25(6):1596–1603CrossRefGoogle Scholar
  129. Radtke M, Müller RH (2001) Nanostructured lipid drug carriers. New Drugs 2:48–52Google Scholar
  130. Rehm BH (2009) Alginates: biology and applications, vol 13. Springer Science & Business MediaGoogle Scholar
  131. Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556CrossRefGoogle Scholar
  132. Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-Gonzalez D, Wenz G (2010) Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release 141:85–92PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sarkar S, Singhal RS (2011) Esterification of guar gum hydrolysate and gum Arabic with n-octenyl succinic anhydride and oleic acid and its evaluation as wall material in microencapsulation. Carbohydr Polym 86(4):1723–1731CrossRefGoogle Scholar
  134. Saupe A, Rades T (2006) Solid lipid nanoparticles. In: Nanocarrier technologies. Springer, Netherlands, pp 41–50CrossRefGoogle Scholar
  135. Sekiguchi S, Miura Y, Kaneko H, Nishimura SI, Nishi N, Iwase M, Tokura S (1994) Molecular weight dependency of antimicrobial activity by chitosan oligomers. In: Nishinari K, Doi E (eds) Food hydrocolloids: structures, properties, and functions. Plenum, New York, pp 71–76CrossRefGoogle Scholar
  136. Shaddel R, Hesari J, Azadmard-Damirchi S, Hamishehkar H, Fathi-Achachlouei B, Huang Q (2018) Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. Int J Biol Macromol 107(Pt B):1800–1810PubMedCrossRefPubMedCentralGoogle Scholar
  137. Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140CrossRefGoogle Scholar
  138. Shegokar R, Müller RH (2010) Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 399(1):129–139PubMedCrossRefPubMedCentralGoogle Scholar
  139. Shu B, Yu W, Zhao Y, Liu X (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76(4):664–669CrossRefGoogle Scholar
  140. Shutava TG, Balkundi SS, Lvov YM (2009) Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J Colloid Interface Sci 330(2):276–283PubMedCrossRefPubMedCentralGoogle Scholar
  141. Silva DF, Favaro Trindade CS, Rocha GA, Thomazini M (2012) Microencapsulation of lycopene by gelatin–pectin complex coacervation. J Food Process Preserv 36(2):185–190CrossRefGoogle Scholar
  142. Sinha VR, Kumria R (2001) Polysaccharides in colon-specific drug delivery. Int J Pharm 224(1):19–38PubMedCrossRefPubMedCentralGoogle Scholar
  143. Song WO, Chun OK, Hwang I, Shin HS, Kim BG, Kim KS, Lee SY, Shin D, Lee SG (2007) Soy isoflavones as safe functional ingredients. J Med Food 10(4):571–580PubMedCrossRefPubMedCentralGoogle Scholar
  144. Stănciuc N, Oancea AM, Aprodu I, Turturică M, Barbu V, Ioniţă E, Râpeanu G, Bahrim G (2018) Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation. J Food Eng 223:197–207CrossRefGoogle Scholar
  145. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272CrossRefGoogle Scholar
  146. Suleria HAR, Osborne S, Masci P, Gobe G (2015) Marine-based nutraceuticals: an innovative trend in the food and supplement industries. Mar Drugs 13(10):6336–6351PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sun Q, Wang F, Han D, Zhao Y, Liu Z, Lei H, Song Y, Huang X, Li X, Ma A, Yuan G (2014) Preparation and optimization of soy protein isolate–high methoxy pectin microcapsules loaded with Lactobacillus delbrueckii. Int J Food Sci Technol 49(5):1287–1293CrossRefGoogle Scholar
  148. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interf Sci 108:303–318CrossRefGoogle Scholar
  149. Tai A, Sawano T, Ito H (2012) Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci Biotechnol Biochem 76:314–318PubMedCrossRefPubMedCentralGoogle Scholar
  150. Teeranachaideekul V, Müller RH, Junyaprasert VB (2007) Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)—effects of formulation parameters on physicochemical stability. Int J Pharm 340(1):198–206PubMedCrossRefPubMedCentralGoogle Scholar
  151. Tejpal CS, Chatterjee NS, Elavarasan K, Lekshmi RGK, Anandan R, Asha KK, Ganesan B, Mathew S, Ravishankar CN (2017) Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. Int J Biol Macromol 104:1874–1881PubMedCrossRefPubMedCentralGoogle Scholar
  152. Thompson AK, Hindmarsh JP, Haisman D, Rades T, Singh H (2006) Comparison of the structure and properties of liposomes prepared from milk fat globule membrane and soy phospholipids. J Agric Food Chem 54(10):3704–3711PubMedCrossRefPubMedCentralGoogle Scholar
  153. Timilsena YP, Adhikari R, Barrow CJ, Adhikari B (2016) Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. Int J Biol Macromol 91:347–357PubMedCrossRefPubMedCentralGoogle Scholar
  154. Ting Y (2014) Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. J Funct Foods 7:112–128CrossRefGoogle Scholar
  155. Tsai FH, Kitamura Y, Kokawa M (2017) Effect of gum arabic-modified alginate on physicochemical properties, release kinetics, and storage stability of liquid-core hydrogel beads. Carbohydr Polym 174:1069–1077PubMedCrossRefPubMedCentralGoogle Scholar
  156. Unger EC, Porter T, Culp W, Labell R, Matsunaga T, Zutshi R (2004) Therapeutic applications of lipid-coated microbubbles. Adv Drug Deliv Rev 56(9):1291–1314PubMedCrossRefPubMedCentralGoogle Scholar
  157. Varavinit S, Chaokasem N, Shobsngob S (2001) Studies of flavor encapsulation by agents produced from modified sago and tapioca starches. Starch Stärke 53(6):281–287CrossRefGoogle Scholar
  158. Veneranda M, Hu Q, Wang T, Luo Y, Castro K, Madariaga JM (2018) Formation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of eugenol. LWT Food Sci Technol 89:596–603CrossRefGoogle Scholar
  159. Wang P (2013) The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C 33(8):4802–4808CrossRefGoogle Scholar
  160. Wang Q, Zhang J, Wang A (2009a) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78(4):731–737CrossRefGoogle Scholar
  161. Wang Y, Lu Z, Lv F, Bie X (2009b) Study on microencapsulation of curcumin pigments by spray drying. Eur Food Res Technol 229(3):391–396CrossRefGoogle Scholar
  162. Wang T, Hu Q, Zhou M, Xia Y, Nieh MP, Luo Y (2016) Development of “all natural” layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology. Eur J Pharm Biopharm 107:273–285PubMedCrossRefPubMedCentralGoogle Scholar
  163. Wang M, Fu Y, Chen G, Shi Y, Li X, Zhang H, Shen Y (2018) Fabrication and characterization of carboxymethyl chitosan and tea polyphenols coating on zein nanoparticles to encapsulate β-carotene by anti-solvent precipitation method. Food Hydrocoll 77:577–587CrossRefGoogle Scholar
  164. Waraho T, McClements DJ, Decker EA (2011) Mechanisms of lipid oxidation in food dispersions. Trends Food Sci Technol 22(1):3–13CrossRefGoogle Scholar
  165. Weinbreck F, Nieuwenhuijse H, Robijn GW, de Kruif CG (2004) Complexation of whey proteins with carrageenan. J Agric Food Chem 52(11):3550–3555PubMedCrossRefPubMedCentralGoogle Scholar
  166. Westesen K, Bunjes H, Koch MHJ (1997) Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J Control Release 48(2):223–236CrossRefGoogle Scholar
  167. Won-Seok C, Kil-Jin A, Dong-Wook L, Myung-Woo B, Hyun-Jin P (2002) Preparation of chitosan oligomers by irradiation. Polym Degrad Stab 78:533–538CrossRefGoogle Scholar
  168. Wu LY, Wen QB, Yang XQ, Xu MS, Yin SW (2011) Wettability, surface microstructure and mechanical properties of films based on phosphorus oxychloride-treated zein. J Sci Food Agric 91(7):1222–1229PubMedCrossRefPubMedCentralGoogle Scholar
  169. Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25:170–179CrossRefGoogle Scholar
  170. Xiao D, Davidson PM, Zhong Q (2011) Spray-dried zein capsules with coencapsulated nisin and thymol as antimicrobial delivery system for enhanced antilisterial properties. J Agric Food Chem 59(13):7393–7404PubMedCrossRefPubMedCentralGoogle Scholar
  171. Ye A (2008) Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications–a review. Int J Food Sci Technol 43(3):406–415CrossRefGoogle Scholar
  172. Yu D, Xiao S, Tong C, Chen L, Liu X (2007) Dialdehyde starch nanoparticles: preparation and application in drug carrier. Chin Sci Bull 52:2913–2918CrossRefGoogle Scholar
  173. Zeeb B, Saberi AH, Weiss J, McClements DJ (2015) Formation and characterization of filled hydrogel beads based on calcium alginate: factors influencing nanoemulsion retention and release. Food Hydrocoll 50:27–36CrossRefGoogle Scholar
  174. Zhang Y, Niu Y, Luo Y, Ge M, Yang T, Yu LL, Wang Q (2014) Fabrication, characterization and antimicrobial activities of thymol-loaded zein nanoparticles stabilized by sodium caseinate–chitosan hydrochloride double layers. Food Chem 142:269–275PubMedCrossRefPubMedCentralGoogle Scholar
  175. Zhuang CY, Li N, Wang M, Zhang XN, Pan WS, Peng JJ, Pan YS, Tang X (2010) Preparation and characterization of vinpocetine loaded nanostructured lipid carriers (NLC) for improved oral bioavailability. Int J Pharm 394(1):179–185PubMedCrossRefPubMedCentralGoogle Scholar
  176. Zimet P, Livney YD (2009) Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocoll 23(4):1120–1126CrossRefGoogle Scholar
  177. Zuanon LAC, Malacrida CR, Telis VRN (2013) Production of turmeric oleoresin microcapsules by complex coacervation with gelatin–gum Arabic. J Food Process Eng 36(3):364–373CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Lekshmi R. G. Kumar
    • 1
  • K. K. Anas
    • 1
  • C. S. Tejpal
    • 1
  • Suseela Mathew
    • 1
  1. 1.Biochemistry & Nutrition DivisionCentral Institute of Fisheries Technology (CIFT), ICARCochinIndia

Personalised recommendations