Numerical Simulation of Equatorial Ionospheric Response to Extra-Terrestrial High Energy Phenomena Using Ion Chemistry Models

  • Sourav Palit
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)


Ionosphere of earth is a giant natural plasma laboratory, which responses to various excitations from local and celestial radiation sources. Apart from the ever-present cosmic rays and the day-time ultraviolet radiation from the Sun, solar activities modify the plasma environment of the ionosphere with frequency regulated by the 11-year solar cycle. While incident energetic charged particles from events like solar flares and coronal mass ejections (CMEs), lead by geomagnetic field, affect only the high latitude part of the ionosphere, the equatorial ionosphere is readily modified due to ionization by the enhanced high energy photons, such as, extreme ultraviolet (EUV), soft X-ray fluxes etc. Evaluation of the modulation in ionospheric plasma properties by such events requires detailed estimation of the altitude-wise energy deposition/ionization rates and the subsequent ion-chemistry evolution. Particularly the least explored lowest part of the ionosphere (called the D-region during day time), for which direct evaluation of any physical parameters is almost impossible and radio frequency remote sensing is the only viable option, the task is quite challenging. A new computer model comprising of Monte Carlo simulation and a simplistic ion-chemistry scheme to evaluate the effect of extra-terrestrial ionizing radiation sources on D-region ionosphere is presented here. Rigorous validation of the model by comparing the outcome with Very Low Frequency (VLF) radio wave studies of several solar flares in a propagation path belonging to Indian subcontinent is done. The model is also extended to explore a reconstruction method to find source characteristics, like spectrum of incident photons by deconvolution of the observed plasma parameters. This is a significant stride along the path to establish earth’s atmosphere as an astronomical detector.


  1. 1.
    Gorney, D.J.: Rev. Geophys. 28, 315336 (1990)CrossRefGoogle Scholar
  2. 2.
    Liu, L., WanYiDing, W., Le, C., Le, H.: Chinese. Sci. Bull. 56, 1202–1211 (2011). ADSCrossRefGoogle Scholar
  3. 3.
    Morrison, P.: Phys. Rev. 101, 1397–1404 (1956)ADSCrossRefGoogle Scholar
  4. 4.
    Inan, U.S., Cummer, S.A., Marshall, R.A.: JGR 115 (2010). CrossRefGoogle Scholar
  5. 5.
    Fishman, G.J., Inan, U.S.: Nature 331, 418–420 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Whitten, R.C., Poppoff, I.G.: Fundamentals of Aeronomy. Wiley, New York (1971)Google Scholar
  7. 7.
    Mitra, A.P., Rowe, J.N.: JASTP 34, 795–806 (1972)Google Scholar
  8. 8.
    Grubor, D.P., Suliic, D.M., Zigmann, V.: Serb. Astron. J. 171, 29–35 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Atmos. Chem. Phys. 13, 9159–9168 (2013). ADSCrossRefGoogle Scholar
  10. 10.
    Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Astrophys Space Sci. 356, 19–28 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Palit, S., Ray, S., Chakrabarti, S.K.: Astrophys Space Sci. 361, 151 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Mariska, J.T., Oran, E.S.: J. Geophys. Res. 86, 5868–5872 (1981). ADSCrossRefGoogle Scholar
  13. 13.
    McRae, W.M., Thomson, N.R.: J. Atmos. Sol. Terr. Phys. 66,7787 (2004)CrossRefGoogle Scholar
  14. 14.
    Thomson, N.R., Clilverd, M.A.: J. Atmos. Sol. Terr. Phys. 63, 1729–1737 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vasyliunas, V.M.: J. Geophys. Res., 99, 5771 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    Tsyganenko, N.A., Sitnov, M.I.: J. Geophys. Res. 110, A03208 (2005). ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.-C. Yashiro, S., Zhukov, A.N.: J. Geophys. Res. 112, A10102 (2007). ADSCrossRefGoogle Scholar
  18. 18.
    Inan, U.S., Lehtinen, N.G., Moore, R.C., Hurley, K., Boggs, S., Smith, D.M., Fishman G.J.: J. Geophys. Res. 34, L08103 (2007). ADSGoogle Scholar
  19. 19.
    Tanaka, Y.T., Terasawa, T., Yoshida, M., Horie, T., Hayakawa, M.: J. Geophys. Res. 113, A07307 (2008). ADSGoogle Scholar
  20. 20.
    Raulin, J.P., Trottet, G., deCastro, C.G., Correia, E., Macotela, E.L.: J. Geophys. Res. 119, 4758–4766 (2014)Google Scholar
  21. 21.
    Mathews, J.D., Breakall, J.K., Ganguly, S.: J. Atmos. Terr. Phys. 44(5), 441–448 (1982). ADSCrossRefGoogle Scholar
  22. 22.
    Hargreaves, J.K.: The Solar-Terrestrial Environment. Cambridge University Press, New York (1992)CrossRefGoogle Scholar
  23. 23.
    Wait J.R.: J. Res. Natl. Bur. Stand. Sect. D 64(2), 153–203 (1960)Google Scholar
  24. 24.
    Wait J.R.: J. Geophys. Res. 67(10), 3823–3828 (1962). ADSCrossRefGoogle Scholar
  25. 25.
    Mcrae W.M., Thomson N.R.: J. Atmos. Sol. Terr. Phys. 66(1), 77–87 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    Zigman, V., Grubor, D., Sulic, D.: J. Atmos. Terr. Phys. 69, 775–792,(2007). ADSCrossRefGoogle Scholar
  27. 27.
    Mitra, A.P.: Ionospheric Effects of Solar Flares. Astrophysics and Space Science Library. D. Reidel Publishing Co., Dordrecht, vol. 46, p. 307 (1974)CrossRefGoogle Scholar
  28. 28.
    Mitra, A.P.: J. Geophys. Res. 56(3), 355 (1951)ADSCrossRefGoogle Scholar
  29. 29.
    Wait, J.R., Spies, K.P.: NBS Tech. Note, 300 (1964)Google Scholar
  30. 30.
    Kelley, M.C.: The Earths Ionosphere, Plasma Physics and Electrodynamics, chapter 2.2, 2nd edn., Academic, New York (2009)Google Scholar
  31. 31.
    Davies, K.,: Ionospheric Radio. Peter Peregrinus Ltd., London (1990)CrossRefGoogle Scholar
  32. 32.
    Poulsen, W.L.: Ph.D. Thesis, Stanford University (1991)Google Scholar
  33. 33.
    Budden, K.G.: Radio Waves in the Ionosphere. Cambridge University Press, Cambridge (1966)Google Scholar
  34. 34.
    Lyn, J.W.: AIP Conf. Proc. 1286(3) (2010).
  35. 35.
    Wait, J.R.: Geofisica pura e applicata 41,73–85 (1958)ADSCrossRefGoogle Scholar
  36. 36.
    Ferguson, J.A.: version 2.0. Technical document 3030, Space and Naval Warfare Systems Center, San Diego, CA (1998)Google Scholar
  37. 37.
    Rawer, K., Bilitza, D., Ramakrishna, S.: Reviews Geophys. Space Sci.16(2), 177–181 (1978)ADSCrossRefGoogle Scholar
  38. 38.
    Bilitza, D.: International Reference Ionosphere 2000. Radio Sci. AGU. 36(2), 261–275 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X.: International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 15, 418–429 (2017). ADSCrossRefGoogle Scholar
  40. 40.
    Rowe, J.N., Mitra, A.P., Ferraro, A.J., Lee, H.S.: J. Atmos. Terr. Phys. 36, 755–785 (1974)ADSCrossRefGoogle Scholar
  41. 41.
    Mitra, A.P.: J. Atmos. Sol. Terr. Phys. 43, 737–752 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    Glukhov, V.S., Pasko, V.P., Inan, U.S.: J. Geophys. Res. 97, 16971–16979 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    Lehtinen, N.G., Inan, U.S.: Geophys. Res. Lett. 34, L08804 (2007). ADSCrossRefGoogle Scholar
  44. 44.
    Hedin, A.E.: Geophys. Res. Lett. 96, 1159–1172 (1991)CrossRefGoogle Scholar
  45. 45.
    Pasko, V.P., Inan, U.S.: J. Geophys. Res. 99, 17523–17537 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    Agostinelli, S., Allison, J., Amako, K., et al.: GEANT4 simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sourav Palit
    • 1
  1. 1.Centro de Rádio-Astronomia e AstrofísicaMackenzie Presbyterian UniversityConsolação, São PauloBrazil

Personalised recommendations