Advertisement

Role of Interstellar Molecules on Evolution of Cosmic Deuteration: An ALMA Observation as a Case in Point

  • Dipen Sahu
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)

Abstract

The primordial atomic D/H ratio in the interstellar medium is ∼ 10−5. There is no known source in the Universe which produces atomic deuterium. Hence, the order of cosmic deuteration is similar to the primordial D/H ratio. Despite such low D/H ratio, many deuterated molecules are seen to be heavily fractionated compared to its hydrogenated counterpart. Interstellar chemistry and zero-point energy difference in deuterated species are the main cause of it. In this article, we discuss the deuterium fractionation of interstellar molecules under different molecular cloud condition, ranging from cold prestellar condition to hot protostar condition. We also discuss, how deuterium fractionation in interstellar molecules could be used as an evolutionary tracer of molecular clouds. As an example of an interstellar deuterated molecule, we discuss here an ALMA observation of deuterated formaldehyde in the low-mass protostar system HH212.

Notes

Acknowledgements

I want to thank my supervisors Dr. Ankan Das and Prof. Sandip K. Chakrabarti for introducing me into the subject- Astrochemistry. I appreciate the effort of the Editors, for giving me a chance to write in this Festschrift.

References

  1. 1.
    Barrett, A.H., Lilly, A.E.: AJ 62, 5 (1957)ADSCrossRefGoogle Scholar
  2. 2.
    Bianchi, E., et al.: A&A 606, L7 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Caselli, C., Stantcheva, T., et al.: Plan. and space sci. 50, 1257 (2002)Google Scholar
  4. 4.
    Cazaux, S., Caselli, P., Spaans, M.: ApJ 741, L34 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    Ceccarelli, C., Dominik, C.: A&A 440, 583 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, H.-R., Liu, S.-Y., Su, Y.-N., Wang, M.-Y.: ApJ 743, 196 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Codella, C., et al.: A&A 568, L5 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    Croswell, K., Dalgarno, A.: ApJ 289, 618 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    Das, A., Majumdar, L., Chakrabarti, S.K., Sahu, D.: New Astron. 35, 53 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    Das, A., Majumdar, L., Sahu, D., Gorai, P., Sivaraman, B., Chakrabarti, S.K.: ApJ 808, 21 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Das, A., Sahu, D., Majumdar, L., Chakrabarti, S.K.: MNRAS 455, 540–551 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Epstein, R.I., Lattimer, J.M., Schramm, D.N.: Nature 263, 198 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    Fontani, F., Caselli, P., Crapsi, A., et al.: A&A 460, 709 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Fontani, F., Palau, A., Caselli, P., et al.: A&A 529, L7 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Furuya, K., Drozdovskaya, M.N., Visser, R., van Dishoeck, E.F., Walsh, C., Harsono, D., Hincelin, U., Taquet, V.: A&A 599, 40 (2017)CrossRefGoogle Scholar
  16. 16.
    Herzberg, G.: Spectra of Diatomic Molecules, p. 496. Van Nostrand Reinhold, New York (1950)Google Scholar
  17. 17.
    Kraus, J.D.: Radio Astronomy, p. 101. Cygnus-Quasar, Powell (1986)Google Scholar
  18. 18.
    Lee, C.-F., Ho, P.T.P., Hirano, N., et al.: ApJ 659, 499 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Lee, C.-F., Hirano, N., Zhang, Q., Shang, H., Ho, P.T.P., Krasnopolsky, R.: ApJ 786, 114 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Lee, C.-F., Li, Z.-Y., Ho, P.T.P., Hirano, N., Zhang, Q., Shang, H.: ApJ 843, 27 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Lis, D.C., Roueff, E., Gerin, M., Phillips, T.G., Coudert, L.H., van der Tak, F.F.S., van der Tak, F.F.S., Schilke, P.: ApJ 571, L55 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Millar, T.J.: Plasma Sources Sci. Technol. 24, 043001, 31pp. (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Parise, B., Ceccarelli, C., Tielens, A.G.G.M., Castets, A., Caux, E., Lefloch, B., Maret, S.: A& A 453, 949 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Penzias, A.A., Wilson, R.W.: ApJ 142, 419 (1965)ADSCrossRefGoogle Scholar
  25. 25.
    Persson, M.V., Jørgensen, J.K., van Dishoeck, E.F.: A&A 549, L3 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Persson, M.V., Jørgensen, J.K., van Dishoeck, E., Harsono, D.: ApJ 563, 74 (2014)Google Scholar
  27. 27.
    Pillai, T., Wyrowski, F., Hatchell, J., Gibb, A.G., Thompson, M.A.: A&A 467, 207 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Prodanovi’c, T., Fields, B.D.: Astrophys. J. 597, 48 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Reeves, H., Audouze, J., Fowler, W., Schramm, D.N.: ApJ 179, 909 (1973)ADSCrossRefGoogle Scholar
  30. 30.
    Roberts, H., Millar, T.J.: A&A 471, 849 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Sahu, D., Das, A., Majumdar, L., Chakrabarti, S.K.: New Astron. 38, 23 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Sahu, D., Minh, Y.-C., Lee, C.-F., et al.: MNRAS 475, 5322 (2018)ADSCrossRefGoogle Scholar
  33. 33.
    Spezzano, S., Caselli, P., Bizzocchi, L., Giuliano, B.M., Lattanzi, V.: A&A 606, 25pp. (2017)Google Scholar
  34. 34.
    Swings, P., Rosenfeld, L.: ApJ 86, 483 (1937)ADSCrossRefGoogle Scholar
  35. 35.
    Taquet, V., Ceccarelli, C., Kahane, C.: ApJ 748, L3 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    Walmsley, C.M., Flower, D.R., Pineau Des Forêts, G.: A&A 418, 1035 (2004)ADSGoogle Scholar
  37. 37.
    Weinreb, S., Barrett, A.H., Meeks M.L., Henry, J.C.: Nature 200, 829 (1963)ADSCrossRefGoogle Scholar
  38. 38.
    Wilson, R.W., Jefferts, K.B., Penzias, A.A.: ApJL 161, L43 (1970)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dipen Sahu
    • 1
  1. 1.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations