Advertisement

Explaining Major Sources of Sulfur-Bearing Molecules in the Interstellar Medium

  • Prasanta Gorai
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)

Abstract

Despite the lower abundance of sulfur, it owns a pivotal part in the interstellar chemistry. Sulfur-bearing molecules are utilized to investigate the physical property and determine the age of a star-forming region. The major sulfur reservoir of the Interstellar medium (ISM) is a long-standing mystery. In the diffuse region, the abundance of sulfur seemed to be cosmic but in the dense cloud, it significantly deviates from the cosmic sulfur abundance (∼ 10−5). In last few decades, various simple sulfur-bearing molecules were observed in different regions of the ISM or circumstellar shells. Among the complex sulfur yielding species, methanethiol (CH3SH) has been firmly detected in the ISM. Investigations are going on for the discovery of the more complex sulfur species. Tentative detection of ethanethiol (C2H5SH) in the ISM has been recently reported. Based on this trend, we investigated the formation of higher order alcohols and their analogous sulfur species. Quantum chemical calculation has been employed to find out the most stable conformer of higher order alcohols and their sulfur analogues and their formation pathways under interstellar conditions. Kinetic information obtained from the quantum chemical calculations can be used in gas-grain chemical modeling to study the chemical evolution of these alcohols and thiols.

Notes

Acknowledgements

I wish to acknowledge ISRO respond project (Grant No. ISRO/RES/2/402/ 16-17) for financial support. I would like to express my special thanks and gratitude to Dr. Ankan Das and Prof. Sandip K. Chakrabarti for the continuous support and help to complete this work.

References

  1. 1.
    Becke, A.D.: JChPh 98, 5648 (1993)ADSGoogle Scholar
  2. 2.
    Bockelée-Morvan, D., et al.: A&A 353, 1101 (2000)ADSGoogle Scholar
  3. 3.
    Chakrabarti, S., Chakrabarti, S.K.: A&A 354, L6 (2000)ADSGoogle Scholar
  4. 4.
    Chakrabarti, S.K., Das, A., Acharyya, K., et al.: A&A 457, 167 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Chakrabarti, S.K., Majumdar L., et al.: APSS 357, 90 (2015)ADSGoogle Scholar
  6. 6.
    Charnley, S.B.: ApJ 481, 396 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Das, A., Acharyya, K., Chakrabarti, S., et al.: A&A 486, 209 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Das, A., Majumdar, L., Sahu, D., Gorai, P., et al.: ApJ 808, 21 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Das, A., Sahu, D., Majumdar, L., et al.: MNRAS 455, 540 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Druard, C., Wakelam, V.: MNRAS 426, 354 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Etim, E.E., Gorai, P., Das, A., Arunan, E.: ASR 61, 2870 (2018)Google Scholar
  12. 12.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al.: Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT (2013)Google Scholar
  13. 13.
    García-Rojas, J., Esteban, C., Peimbert, M., et al.: MNRAS 368, 253 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Garozzo, M., Fulvio, D., Kanuchova, Z., et al.: A&A 509, A67 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Garrod, R.: ApJ 765, 60 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Gorai, P., Das, A., Majumdar, L., et al.: MolAp 6, 36–46 (2017)ADSGoogle Scholar
  17. 17.
    Gorai, P., Das, A., Das, A., Sivaraman, B., et al.: ApJ 836,70 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Hatchell, J., Thompson, M.A., Millar, T.J., et al.: A&A 338, 713 (1998)ADSGoogle Scholar
  19. 19.
    Herbst, E., van Dishoeck, E.F.: Annu. Rev. Astron. Astrophys. 47, 427 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Holdship, J., et al.: MNRAS 463, 802 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Jiménez-Escobar, A., Muñoz Caro, G.M.: A&A 536, A91 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Kolesniková, L., Tercero, B., Cernicharo, J., et al.: ApJ 784, L7 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Linke, R.A., Frerking, M.A., Thaddeus, P.: ApJ 232, L139 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    Majumdar, L., Gorai, P., Das, A., et al.: APSS 360, 64 (2015)ADSGoogle Scholar
  25. 25.
    Martín-Hernańdez, N.L., Peeters, E., Morisset, C., et al.: A&A 381, 606 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    McElroy, D., Walsh, C., Markwick, et al.: A&A 550, A36 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Minh, Y.C.: J. Phys.: Conf. Ser. 728, 052007 (2016)Google Scholar
  28. 28.
    Minh, Y.C., Liu, H.B., Madrid, R.: ApJ 824, 99 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    Müller, H.S.P., Belloche, A., Xu, L.-H., et al.: A&A 587, A92 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Palumbo M.E., Tielens A.G.G.M., Tokunaga A.T.: ApJ 449, 674 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    Pavithraa, S., Methikkalam, R.R.J., Gorai, P., et al.: Spectrochim. Acta A Mol. Biomol. Spectrosc. 178, 166 (2017)ADSCrossRefGoogle Scholar
  32. 32.
    Pavithraa, S., Sahu, D., Seth, G., et al.: APSS 362,126 (2017)ADSGoogle Scholar
  33. 33.
    Penzias A.A., Solomon P.M., Wilson R.W., Jefferts K.B.: ApJ 168, L53 (1971)ADSCrossRefGoogle Scholar
  34. 34.
    Ruaud, M., Wakelam, V., Hersant, F.: MNRAS 459, 375 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Sil, M., Gorai, P., Das, A., et al.: ApJ 853, 2 (2018)ADSCrossRefGoogle Scholar
  36. 36.
    Tieftrunk, A., Pineau des Forets, G., et al.: A&A 289, 579 (1994)Google Scholar
  37. 37.
    Vidal, T.H.G., Wakelam, V.W.: MNRAS 474, 5575 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    Vidal, T.H.G., Loison, J.-C., Jaziri, A.Y., et al.: MNRAS 469, 435 (2017)ADSCrossRefGoogle Scholar
  39. 39.
    Wakelam, V., Caselli, P., Ceccarelli, C., et al.: A&A 422, 159 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Wakelam, V., Smith, I.W.M., et al.: Space Sci. Rev. 156(1), 13 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Woods, P.M., Occhiogrosso, A., Viti, S., et al.: MNRAS 450, 1256 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Prasanta Gorai
    • 1
  1. 1.Indian Centre for Space PhysicsKolkataIndia

Personalised recommendations