Advertisement

How Are the Outbursts Around Black Holes Triggered?

  • Shreeram Nagarkoti
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 53)

Abstract

We study accretion processes under two component accretion flow paradigm where an accretion flow has Keplerian and sub-Keplerian components. Here, observational studies carried out by authors in earlier studies using this approach are revisited. Using various methods, Shakura and Sunyaev’s viscosity parameter, α values in both sub-Keplerian and Keplerian components are obtained during outbursts of various sources. The values of α were found to be supercritical in Keplerian component and subcritical in sub-Keplerian component always (as suggested in previous studies). Subsequently, a study of variation of sub-Keplerian values of α was then carried out which confirms that this value rose gradually in rising phase and decreased in declining phase for all outbursting sources. Spectral state transitions took place for some particular limits of sub-Keplerian values of α. For its values less than 0.008, all sources were categorized in hard spectral state. When it was in the ranges 0.008–0.035 and 0.035–0.01, hard and soft intermediate states were observed respectively. Soft spectral state would be expected for any larger values of α in the sub-Keplerian component. Thus the concept of viscosity enhancement being responsible for triggering the outbursts and spectral state changes around black holes has been strengthened. A study with more outbursts of larger number of sources should be carried out to confirm this value of α which triggers these outbursts and spectral state transitions, predict various line parameters relevant for their future astronomical detection.

References

  1. 1.
    Belloni, T., Homan, J., Casella, P., et al.: A&A 440, 207 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Bhattacharjee, A., Banerjee, I., Banerjee, A., Debnath, D., Chakrabarti, S.K.: MNRAS 466, 1372 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Bisnovatyi-Kogan, G.S., Blinnikov, S.I.: A&A 59, 111 (1977)ADSGoogle Scholar
  4. 4.
    Cannizzo, J.K.: In: Wheeler J.C. (ed.) Accretion Disks in Compact Stellar Systems, vol. 6 (C93a). World Scientific, Singapore (1993)Google Scholar
  5. 5.
    Cannizzo, J.K., Chen, W., Livio, M.: ApJ 454, 880 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Cannizzo, J.K., Still, M.D., Howell, S.B., Wood, M.A., Smale, A.P.: ApJ 725, 1393 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Chakrabarti, S.K.: ApJ 347, 365 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Chakrabarti, S.K.: Theory of Transonic Astrophysical Flows. World Scientific, Singapore (1990)CrossRefGoogle Scholar
  9. 9.
    Chakrabarti, S.K., Titarchuk, L.G.: ApJ 455, 623 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    Chakrabarti, S.K., Manickam, S.G.: ApJ 531, L41 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    Chakrabarti, S. K., Nandi, A., Debnath, D., et al.: IJP 79, 841 (2005). arXiv:astro-ph/0508024Google Scholar
  12. 12.
    Chakrabarti, S.K., Debnath, D., Nagarkoti, S.: MNRAS (2018, under review)Google Scholar
  13. 13.
    Chatterjee, D., Debnath, D., Chakrabarti, S.K., Mondal, S., Jana, A.: ApJ 827, 88 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Dutta, B.G., Chakrabarti, S.K., Pal, P.S.: AIPC 1053, 165 (2008)ADSGoogle Scholar
  15. 15.
    Debnath, D., Chakrabarti, S.K., Nandi, A., et al.: BASI 36, 151 (2008)ADSGoogle Scholar
  16. 16.
    Debnath, D., Chakrabarti, S.K., Nandi, A., et al.: AdSpR 52, 2143 (2013)ADSGoogle Scholar
  17. 17.
    Debnath, D., Chakrabarti, S.K., Mondal, S.: MNRAS 440, L121 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Doxsey, H., Bradt, G., Fabbiano, R.: IAU Circ., 3113 (1977)Google Scholar
  19. 19.
    Fender, R.P., Belloni, T.M., Gallo, E.: MNRAS 355, 1105 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Frank, J., King A., Raine, D.: Accretion Power in Astrophysics, 3rd edn. Cambridge University Press, New York (2002)CrossRefGoogle Scholar
  21. 21.
    Giri, K., Chakrabarti, S.K.: MNRAS 430, 2836 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Hjellming, R.M., Rupen, M.P.: Nature 375, 464 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    Jana, A., Debnath, D., Chakrabarti, S.K., et al.: ApJ 819, 107 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Kaluzienski, L.J., Holt, S.S.: IAU Circ., 3104 (1977)Google Scholar
  25. 25.
    Kuulkers, E., Kouveliotou, C., Belloni, T., et al.: A&A 552, 32 (2013)CrossRefGoogle Scholar
  26. 26.
    Mangano, V., Baumgartner, W.H., Cummings, J.R., et al.: GCN, 11294 (2010)Google Scholar
  27. 27.
    Matsumoto, R., Kato, S., Fukue, J., Okazaki, A.T.: PASJ 36, 71 (1984)ADSGoogle Scholar
  28. 28.
    McClintok, J. E., Remillard, R.A.: arXiv:astro-ph/0306213 (2006)Google Scholar
  29. 29.
    Meyer, F., Meyer-Hofmeister, E.: A&A 132, 143 (1984)ADSGoogle Scholar
  30. 30.
    Molteni, D., Sponholz, H., Chakrabarti, S.K.: ApJ 457, 805 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    Mondal, S., Debnath, D., Chakrabarti, S.K.: ApJ 786, 4 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Mondal, S., Chakrabarti, S.K., Debnath, D.: ApJ 798, 57 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Mondal, S., Chakrabarti, S.K., Nagarkoti, S.: ApJ 850, 47 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Molla, A.A., Debnath, D., Chakrabarti, S. K., et al.: MNRAS, 460, 3163 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Nagarkoti, S., Chakrabarti, S.K.: ApJ 816, 7 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Nagarkoti, S., Chakrabarti, S.K.: MNRAS 462, 850 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Nandi, A., Debnath, D., Mandal, S., et. al.: A&A 542, 56 (2012)Google Scholar
  38. 38.
    Negoro, H., Nakahira, S., Ueda, Y., et al.: ATEL, 3330 (2011)Google Scholar
  39. 39.
    Negoro, H., Nakajima, M., Nakahira, S., et al.: ATEL, 3611 (2011)Google Scholar
  40. 40.
    Orosz, J., Bailyn, C.: ApJ 477, 876 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    Pétri, J.: Ap&SS 318, 181 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Pringle, J.E.: ARA&A 19, 137 (1981)ADSCrossRefGoogle Scholar
  43. 43.
    Roy, A., Chakrabarti, S.K.: MNRAS 472, 4689 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    Russell, T. D., Soria, R., Motch, C., et al.: MNRAS 439, 1381 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Shakura, N.I., Sunyaev, R.A.: A&A 24, 337 (1973)ADSGoogle Scholar
  46. 46.
    Sunyaev, R.A., Titarchuk, L.G.: A&A 86, 121 (1980)ADSGoogle Scholar
  47. 47.
    Sunyaev, R.A., Titarchuk, L.G.: A&A 143, 374 (1985)ADSGoogle Scholar
  48. 48.
    Smak, J.: Acta. Astron. 34, 161 (1984)ADSGoogle Scholar
  49. 49.
    Steiner, J.F., McClintock, J.E., Reid, M.J.: ApJL 745, L7 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Stiele, H., Munoz-Darias, T., Motta, S., Belloni, T.M.: MNRAS 422, 679 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    van der Hooft, F., Heemskerk, M. H. M., Alberts, F., van Paradijs, J.: A&A 329, 538 (1998)ADSGoogle Scholar
  52. 52.
    Yamaoka et al.: PASJ 64, 32 (2012)Google Scholar
  53. 53.
    Zhang, S.N., et al.: IAU Circ., 6046 (1994)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Shreeram Nagarkoti
    • 1
  1. 1.St. Xavier’s CollegeMaitighar, KathmanduNepal

Personalised recommendations