Production of ZnO Cauliflowers Using the Spray Pyrolysis Method

  • Shadia J. Ikhmayies
Part of the Innovative Renewable Energy book series (INREE)


Zinc oxide (ZnO) is a semiconductor material with direct wide bandgap energy (3.37 eV) and a large exciton binding energy (60meV) at room temperature. It currently attracts worldwide intense interests because of its importance in fundamental studies, and its numerous applications, especially as optoelectronic materials, UV lasers, light-emitting diodes, solar cells, nanogenerators, gas sensors, photodetectors, and photocatalyst. ZnO micro−/nano-cauliflower arrays are of potential use for electrochemical sensing, dye-sensitized solar cells, an electron transporting layer, and photocatalytic applications.

In this work, ZnO cauliflowers were produced as thin films on glass substrates at a substrate temperature of 350 ± 5°C using the low-cost spray pyrolysis (SP) method. Zinc chloride (ZnCl2) was used to prepare the precursor solution. The produced films were characterized using X-ray diffraction and scanning electron microscopy and X-ray energy-dispersive spectroscopy (SEM- EDS). X-ray diffractogram revealed that the films have hexagonal structure with preferential orientation along the (002) line. EDS analysis showed that the films are nonstoichiometric and they contain chlorine. ImageJ software was used to estimate the size distributions of the cauliflowers.


ZnO cauliflowers X-ray diffraction Scanning electron microscopy Spray pyrolysis Solar cells 


  1. 1.
    Nipane D, Thakare SR, Khati NT (2013) Synthesis of novel ZnO having cauliflower morphology for photocatalytic degradation study. J Catal, Article ID 940345, 8 pGoogle Scholar
  2. 2.
    Lu F, Cai W, Zhang Y (2008) ZnO hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance. Adv Funct Mater 18(7):1047–1056CrossRefGoogle Scholar
  3. 3.
    Qu J, Luo C, Cong Q (2011) Synthesis of multi-walled carbon nanotubes/ZnO nanocomposites using absorbent cotton. Nano-Micro Lett 3:115–120CrossRefGoogle Scholar
  4. 4.
    Chu S, Wang G, Zhou W, Lin Y, Chernyak L, Zhao J, Kong J, Li L, Ren J, Liu J (2011) Electrically pumped waveguide lasing from ZnO nanowires. Nat Nanotechnol 6(8):506–510CrossRefGoogle Scholar
  5. 5.
    Na JH, Kitamura M, Arita M, Arakawa Y (2009) Hybrid pn junction light-emitting diodes based on sputtered ZnO and organic semiconductors. Appl Phys Lett 95(25):253303CrossRefGoogle Scholar
  6. 6.
    Sudhagar P, Kumar RS, Jung JH, Cho W, Sathyamoorthy R, Won J, Kang YS (2011) Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells. Mater Res Bull 46(9):1473–1479CrossRefGoogle Scholar
  7. 7.
    Wang ZL, Yang R, Zhou J, Qin Y, Xu C, Hu Y, Xu S (2010) Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater Sci Eng R 70(3–6):320–329CrossRefGoogle Scholar
  8. 8.
    Xu J, Han J, Zhang Y, Sun Y, Xie B (2008) Studies on alcohol sensing mechanism of ZnO based gas sensors. Sensors Actuators B 132(1):334–339CrossRefGoogle Scholar
  9. 9.
    Lu CY, Chang SJ, Chang SP, Lee CT, Kuo CF, Chang HM (2006) Ultraviolet photodetectors with ZnO nanowires prepared on ZnO:Ga/glass templates. Appl Phys Lett 89(15):153101CrossRefGoogle Scholar
  10. 10.
    Cho S, Kim S, Jang JW, Jung SH, Oh E, Lee BR, Lee KH (2009) Large-scale fabrication of sub-20-nm-diameter ZnO nanorod arrays at room temperature and their photocatalytic activity. J Phys Chem C 113(24):10452–10458CrossRefGoogle Scholar
  11. 11.
    Yamaguchi I, Watanabe M, Shinagawa T, Chigane M, Inaba M, Tasaka A, Izaki M (2009) ZnO nano-cauliflower array dye-sensitized solar cells. ECS Trans 16(36):3–10CrossRefGoogle Scholar
  12. 12.
    He C, Sasaki T, Shimizu Y, Koshizaki N (2008) Synthesis of ZnO nanoparticles by pulsed laser ablation in aqueous media and their self assembly towards spindle-like ZnO aggregates. Appl Surf Sci 254:2196–2202CrossRefGoogle Scholar
  13. 13.
    Fan XM, Lian JS, Guo ZX, Lu HJ (2005) Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si(1 1 1) substrates. Appl Surf Sci 239:176–181CrossRefGoogle Scholar
  14. 14.
    Ko TS, Yang S, Hsu HC, Chu CP, Lin HF, Liao SC, Lu TC, Kuo HC, Hsieh WF, Wang SC (2006) ZnO nanopowders fabricated by dc thermal plasma synthesis. Mater Sci Eng B 134:54–58CrossRefGoogle Scholar
  15. 15.
    Zhang DH, Xue ZY, Wang QP (2002) The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. J Phys D Appl Phys 35:2837–2840CrossRefGoogle Scholar
  16. 16.
    Wang Y, Cui X, Zhang Y, Gao X, Sun Y (2013) Preparation of cauliflower-like ZnO films by chemical bath deposition: photovoltaic performance and equivalent circuit of dye-sensitized solar cells. J Mat Sci Tech 29(2):123–127CrossRefGoogle Scholar
  17. 17.
    Rajabi M, Dariani RS, Iraji A, Zahedi F (2013) Optoelectronic properties of cauliflower like ZnO-ZnO nanorod/p-Si heterostructure. Solid State Electron 90:33–37CrossRefGoogle Scholar
  18. 18.
    Ikhmayies SJ (2016) Synthesis of ZnO microrods by the spray pyrolysis technique. J Electron Mater 45(8):3964–3969CrossRefGoogle Scholar
  19. 19.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2014) A comparison between different ohmic contacts for ZnO thin films. J Semicond 36(3):033005-1-6Google Scholar
  20. 20.
    Ikhmayies SJ, Naseem M, El-Haija A, Ahmad-Bitar RN (2010) Electrical and optical properties of ZnO:Al thin film prepared by the spray pyrolysis technique. Phys Scr 81(1):art. no.015703CrossRefGoogle Scholar
  21. 21.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2010) Characterization of undoped spray-deposited ZnO thin films of photovoltaic applications. FDMP: Fluid Dyn Mat Process 6(2):165–178Google Scholar
  22. 22.
    Ikhmayies SJ, Abu El-Haija NM, Ahmad-Bitar RN (2010) The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films. FDMP: Fluid Dyn Mat Process 6(2):219–232Google Scholar
  23. 23.
    Ikhmayies SJ, Zbib MB (2017) Spray pyrolysis synthesis of ZnO micro/nanorods on glass substrate. J Electron Mater 46:1–6CrossRefGoogle Scholar
  24. 24.
    Ikhmayies SJ (2017) Formation of three dimensional ZnO micro flowers from self assembled ZnO micro discs. Metall Mater Trans A 48(8):3625–3629CrossRefGoogle Scholar
  25. 25.
    Ikhmayies SJ, Zbib MB (2017) Synthesis of ZnO hexagonal micro discs on glass substrates using the spray pyrolysis technique. J Electron Mater 46(7):3982–3986CrossRefGoogle Scholar
  26. 26.
    Juwhari HK, Ikhmayies SJ, Lahlouh B (2017) Room temperature photoluminescence of spray-deposited ZnO thin films on glass substrates. Int J Hydrogen Energy 42:17741–17747CrossRefGoogle Scholar
  27. 27.
    Wang LL, Wang HY, Wang WC, Li K, Wang XC, Li XJ (2013) Capacitive humidity sensing properties of ZnO cauliflowers grown on silicon nanoporous pillar array. Sensors Actuators B Chem 177:740–744CrossRefGoogle Scholar
  28. 28.
    Gordon T, Grinblat J, Margel S (2013) Preparation of “cauliflower-like”. ZnO Micron-Sized Part Mat 6:5234–5246Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Shadia J. Ikhmayies
    • 1
  1. 1.Al Isra University, Faculty of Science, Department of PhysicsAmmanJordan

Personalised recommendations