Advertisement

Demonstration of Tools Control Center for Multi-agent Energy Systems Simulation

  • Brígida Teixeira
  • Francisco Silva
  • Tiago PintoEmail author
  • Gabriel Santos
  • Isabel Praça
  • Zita Vale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10978)

Abstract

The use of energy from renewable sources is one of the major concerns of today’s society. In recent years, the European Union has been changing legislation and implementing policies aimed at promoting its investment and encouraging its use in order to reduce the emission of greenhouse gases [1].

References

  1. 1.
    European Commission: 2030 framework for climate and energy policies. http://ec.europa.eu/clima/policies/2030/index%7B_%7Den.htm (2014)
  2. 2.
    Yang, S.X., Wang, Y.: Applying support vector machine method to forecast electricity consumption. In: International Conference on Computational Intelligence and Security, vol. 1, pp. 929–932, November 2006Google Scholar
  3. 3.
    Conejo, A., Carrion, M., Morales, J.: Decision Making Under Uncertainty in Electricity Markets. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-1-4419-7421-1CrossRefzbMATHGoogle Scholar
  4. 4.
    Santos, G., Pinto, T., Vale, Z., Praça, I., Morais, H.: Enabling communications in heterogeneous multi-agent systems: electricity markets ontology. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 5(2) (2016)CrossRefGoogle Scholar
  5. 5.
    Faria, P., Vale, Z., Baptista, J.: Demand response programs design and use considering intensive penetration of distributed generation. Energies 8(6), 6230–6246 (2015). http://www.mdpi.com/1996-1073/8/6/6230CrossRefGoogle Scholar
  6. 6.
    Santos, G., Pinto, T., Praça, I., Vale, Z.: MASCEM: optimizing the performance of a multi-agent system. Energy 111(C), 513–524 (2016). http://econpapers.repec.org/RePEc:eee:energy:v:111:y:2016:i:c:p:513-524CrossRefGoogle Scholar
  7. 7.
    Pinto, T., Morais, H., Sousa, T.M., Sousa, T., Vale, Z., Praca, I., Faia, R., Pires, E.J.S.: Adaptive Portfolio optimization for multiple electricity markets participation. IEEE Trans. Neural Netw. Learn. Syst. 27, 1720–1733 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Silva, M., Morais, H., Sousa, T., Faria, P., Vale, Z.: Time-horizont distributed energy resources scheduling considering the integration of real-time pricing demand response. In: IEEE Eindhoven PowerTech. IEEE, pp. 1–6 (2015)Google Scholar
  9. 9.
    Fernandes, F., Morais, H., Vale, Z., Ramos, C.: Dynamic load management in a smart home to participate in demand response events. Energy Build. 82, 592–606 (2014)CrossRefGoogle Scholar
  10. 10.
    GECAD: GECAD’s Inteligent Energy Systems Ontologies. http://www.gecad.isep.ipp.pt/ontologies/ies/ (2017)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Brígida Teixeira
    • 1
  • Francisco Silva
    • 1
  • Tiago Pinto
    • 1
    • 2
    Email author
  • Gabriel Santos
    • 1
  • Isabel Praça
    • 1
  • Zita Vale
    • 1
  1. 1.GECAD – Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, Institute of Engineering – Polytechnic of Porto (ISEP/IPP)PortoPortugal
  2. 2.BISITE – Research CentreUniversity of SalamancaSalamancaSpain

Personalised recommendations