Advertisement

The TU Hand: Using Compliant Connections to Modulate Grasping Behavior

  • Dipayan Das
  • Nathanael J. Rake
  • Joshua A. Schultz
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 816)

Abstract

Guided by the notion that the five-fingered anthropomorphic hand is a good general purpose manipulator, Team Tulsa approached the hand-in-hand portion of the grasping and manipulation competition using a simplified anthropomorphic hand. The hand had a simplified thumb, fixed in the opposed position, and only two actuators. Motions of the fingers and thumb were coupled together using a “ties and skips” architecture where thumb and finger tendons were tied to specific coils of a “mainspring” in a manner that produced the best behavior across the wide range of challenges. The actuators could move or deform the spring in common mode, which resulted in an enveloping grasp) or differential mode (which resulted in a pinch grasp) and superimpose the two modes. The compliant nature of the hand allowed the fingers to conform to the object as the grasp was acquired. This strategy allowed the retrieval of all objects from the basket (all on the first or second attempt by the volunteer), and scooping peas from the dish, but could not operate the hammer (due to its weight) the syringe, or the scissors (as they required increased dexterity).

Keywords

Physical compliance Grasping Transmission mechanisms 

References

  1. 1.
    Deshpande, A.D., Ko, J., Fox, D., Matsuoka, Y.: Anatomically correct testbed hand control: muscle and joint control strategies. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 4416–4422 (2009)Google Scholar
  2. 2.
    Weghe, M.V., Rogers, M., Weissert, M., Matsuoka, Y.: The ACT hand: design of the skeletal structure. In: 2004 IEEE International Conference on Robotics and Automation, pp. 3375–3379 (2004)Google Scholar
  3. 3.
    Deshpande, A.D.: Contribution of passive properties of muscle-tendon units to the metacarpophalangeal joint torque of the index finger. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 288–294, September 2010Google Scholar
  4. 4.
    Chang, L.Y., Matsuoka, Y.: A kinematic thumb model for the ACT hand. In: Proceedings - IEEE International Conference on Robotics and Automation 2006, pp. 1000–1005 (2006)Google Scholar
  5. 5.
    Deshpande, A.D., Xu, Z., Weghe, M.J.V., Brown, B.H., Ko, J., Chang, L.Y., Wilkinson, D.D., Bidic, S.M., Matsuoka, Y.: Mechanisms of the anatomically correct testbed hand. IEEE/ASME Trans. Mechatron. 18(1), 238–250 (2013)CrossRefGoogle Scholar
  6. 6.
    Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33(5), 736–752 (2014)CrossRefGoogle Scholar
  7. 7.
    Odhner, L.U., Ma, R.R., Dollar, A.M.: Exploring dexterous manipulation workspaces with the iHY hand. J. Robot. Soc. Jpn 32(4), 318–322 (2014)CrossRefGoogle Scholar
  8. 8.
    Cutkosky, M.R.: Robotic Grasping and Fine Manipulation. Kluwer International Series in Engineering and Computer Science: Robotics. Kluwer Academic Publishers (1985)Google Scholar
  9. 9.
    Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robots 38, 65–88 (2015)CrossRefGoogle Scholar
  10. 10.
    Miller, A.T., Allen, P.K.: GraspIt! A versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)CrossRefGoogle Scholar
  11. 11.
    Lin, Y., Sun, Y.: Grasp planning to maximize task coverage. Int. J. Robot. Res. 34(9), 1195–1210 (2015)CrossRefGoogle Scholar
  12. 12.
    Phoka, T., Pipattanasomporn, P., Niparnan, N., Sudsang, A.: Regrasp planning of four-fingered hand for parallel grasp of a polygonal object. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 779–784. IEEE (2005)Google Scholar
  13. 13.
    Das, D., Rake, N.J., Schultz, J.A.: Compliantly underactuated hands based on multiport networks. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 1010–1015, November 2016Google Scholar
  14. 14.
    Birglen, L., Gosselin, C.M.: Kinetostatic analysis of underactuated fingers. IEEE Trans. Robot. Autom. 20(2), 211–221 (2004)CrossRefGoogle Scholar
  15. 15.
    Hirose, S., Umetani, Y.: The development of soft gripper for the versatile robot hand. Mech. Mach. Theory 13(3), 351–359 (1978)CrossRefGoogle Scholar
  16. 16.
    Williams, D.J.: Grant’s atlas of anatomy, eleventh edition by Anne M.R. Agur and Arthur F. Dalley. Clin. Anat. 19(6), 575 (2006)CrossRefGoogle Scholar
  17. 17.
    Liarokapis, M.V.: Quantifying anthropomorphism of robot hands. In: IEEE International Conference on Robotics and Automation, Karlsruhe (2013)Google Scholar
  18. 18.
    Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press (1994)Google Scholar
  19. 19.
    Soto Martell, J.W., Gini, G.: Robotic hands: design review and proposal of new design process. World Acad. Sci. Eng. Technol. 26, 85–90 (2007)Google Scholar
  20. 20.
    Jacobsen, S.C., Wood, J.E., Knutti, D.F., Biggers, K.B.: The Utah/M.I.T. Dextrous hand: work in progress. Int. J. Robot. Res. 3(4), 21–50 (1984)CrossRefGoogle Scholar
  21. 21.
    Jacobsen, S., Iversen, E., Knutti, D., Johnson, R., Biggers, K.: Design of the UTAH/MIT Dextrous hand. In: 1986 IEEE International Conference on Robotics and Automation, Proceedings, vol. 3, pp. 1520–1532. IEEE (1986)Google Scholar
  22. 22.
    Mason, M.T., Salisbury, J.K.: Robot Hands and the Mechanics of Manipulation, 1st edn. MIT Press, Cambridge (1985)Google Scholar
  23. 23.
    Grebenstein, M., Chalon, M., Friedl, W., Haddadin, S., Wimböck, T., Hirzinger, G., Siegwart, R.: The hand of the dlr hand arm system: designed for interaction. Int. J. Robot. Res. 31(13), 1531–1555 (2012)CrossRefGoogle Scholar
  24. 24.
    Dalley, S.A., Wiste, T.E., Varol, H.A., Goldfarb, M.: A multigrasp hand prosthesis for transradial amputees. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 5062–5065. IEEE (2010)Google Scholar
  25. 25.
    Wiste, T.E., Dalley, S.A., Varol, H.A., Goldfarb, M.: Design of a multigrasp transradial prosthesis. J. Med. Dev. 5(3), 031009 (2011)CrossRefGoogle Scholar
  26. 26.
    Pons, J.L., Rocon, E., Ceres, R., Reynaerts, D., Saro, B., Levin, S., Van Moorleghem, W.: The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16(2), 143–163 (2004)CrossRefGoogle Scholar
  27. 27.
    Massa, B., Roccella, S., Carrozza, M.C., Dario, P.: Design and development of an underactuated prosthetic hand. In: IEEE International Conference on Robotics and Automation 2002, Washington, DC, pp. 3374–3379 (2002)Google Scholar
  28. 28.
    Liu, H., Meusel, P., Seitz, N., Willberg, B., Hirzinger, G., Jin, M.H., Liu, Y.W., Wei, R., Xie, Z.W.: The modular multisensory DLR-HIT-Hand. Mech. Mach. Theory 42(5), 612–625 (2007)CrossRefGoogle Scholar
  29. 29.
    Zatsiorsky, V.M., Li, Z.-M., Latash, M.L.: Coordinated force production in multi-finger tasks: finger interaction and neural network modeling. Biol. Cybern. 79(2), 139–150 (1998)CrossRefGoogle Scholar
  30. 30.
    Tedrake, R.: Underactuated robotics: Learning, planning, and control for efficient and agile machines: Course notes for MIT 6.832Google Scholar
  31. 31.
    Birglen, L.: Force analysis of connected differential mechanisms: application to grasping. Int. J. Robot. Res. 25(10), 1033–1046 (2006)CrossRefGoogle Scholar
  32. 32.
    Prattichizzo, D., Trinkle, J.C.: Grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 671–700. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-30301-5_28CrossRefGoogle Scholar
  33. 33.
    Ciocarlie, M., Hicks, F.M., Holmberg, R., Hawke, J., Schlicht, M., Gee, J., Stanford, S., Bahadur, R.: The velo gripper: a versatile single-actuator design for enveloping, parallel and fingertip grasps. Int. J. Robot. Res. 33(5), 753–767 (2014)CrossRefGoogle Scholar
  34. 34.
    Dechev, N., Cleghorn, W.L., Naumann, S.: Multiple finger, passive adaptive grasp prosthetic hand. Mech. Mach. Theory 36(10), 1157–1173 (2001)CrossRefGoogle Scholar
  35. 35.
    Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33(5), 768–782 (2014)CrossRefGoogle Scholar
  36. 36.
    Santello, M., Flanders, M., Soechting, J.F.: Postural hand synergies for tool use. J. Neurosci. Official J. Soc. Neurosci. 18(23), 10105–15 (1998)CrossRefGoogle Scholar
  37. 37.
    Gabiccini, M., Farnioli, E., Bicchi, A.: Grasp and manipulation analysis for synergistic underactuated hands under general loading conditions. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2836–2842, May 2012Google Scholar
  38. 38.
    Brown, C.Y., Asada, H.H.: Inter-finger coordination and postural synergies in robot hands via mechanical implementation of principal components analysis. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2877–2882, October 2007Google Scholar
  39. 39.
    Martell, M.J., Schultz, J.A.: Multiport modeling of force and displacement in elastic transmissions for underactuated hands. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, pp. 1074–1079 (2014)Google Scholar
  40. 40.
    Howell, L.L.: Intro to compliant mechanisms. http://compliantmechanisms.byu.edu/content/intro-compliant-mechanisms. Accessed 31 Jan 2017
  41. 41.
    Yoon, D., Lee, G., Lee, S., Choi, Y.: Underactuated finger mechanism for natural motion and self-adaptive grasping towards bionic partial hand. In: 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 548–553. IEEE, June 2016Google Scholar
  42. 42.
    Pulleyking, S., Das, D., Schultz, J.: Simplified robotic thumb inspired by surgical intervention. In: Proceedings of the 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 613–619 (2016)Google Scholar
  43. 43.
    Cutkosky, M.R.: On grasp choice, grasp models, and the design of hands for manufacturing tasks. IEEE Trans. Robot. Autom. 5(3), 269–279 (1989)CrossRefGoogle Scholar
  44. 44.
    Schultz, J., Ueda, J.: Two-port network models for compliant rhomboidal strain amplifiers. IEEE Trans. Robot. 29(1), 42–54 (2013)CrossRefGoogle Scholar
  45. 45.
    Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dexterous manipulation. In: IEEE International Conference on Robotics and Automation, Proceedings 2000 ICRA, Millennium Conference, Symposia Proceedings (Cat. No. 00CH37065), vol. 1, pp. 255–262 (2000)Google Scholar
  46. 46.
    Cutkosky, M.R., Kao, I.: Computing and controlling compliance of a robotic hand. IEEE Robot. Autom. 5(2), 151–165 (1989)CrossRefGoogle Scholar
  47. 47.
    Rake, N.J., Skinner, S.P., O’Mahony, G.D., Schultz, J.A.: Modeling and implementation of a simplified human tendon structure in a robotic finger. In: Proceedings of the 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dipayan Das
    • 1
  • Nathanael J. Rake
    • 1
  • Joshua A. Schultz
    • 1
  1. 1.The University of TulsaTulsaUSA

Personalised recommendations