Malignant Lesions

  • Jacopo NoriEmail author
  • Chiara Bellini
  • Claudia Piccolo


Breast cancer is the most common cancer in women, with over 230,000 new cases diagnosed in the United States and 1.5 million new cases of invasive carcinoma diagnosed worldwide each year. For women, there is an approximately 12.4% (1 in 8) individual lifetime chance of developing invasive breast cancer. Breast cancer death rates declined 39% from 1989 to 2015 among women, and this progress was attributed to improvements in early detection [1]. Therefore, the ultimate goal for any breast imaging modality is to decrease the mortality from breast cancer by improving breast cancer detection at its early stage and diagnosis.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;65:5–29.CrossRefGoogle Scholar
  2. 2.
    Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6 Suppl 16):15–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Folkman J. New perspectives in clinical oncology from angiogenesis research. Eur J Cancer. 1996;32A:2534–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Gasparini C, Harris A. Clinical importance of the determination of tumor angiogenesis in breast carcinoma: much more than a new prognostic tool: review. J Clin Oncol. 1995;13:765–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Chu JS, Lee WJ, Chang TC, Chang KJ, Hsu HC. Correlation between tumor angiogenesis and metastasis in breast cancer. J Formos Med Assoc. 1995;94:373–8.PubMedGoogle Scholar
  6. 6.
    Barrett T, Brechbiel M, Bernardo M, Choyke PL. MRI of tumor angiogenesis. J Magn Reson Imaging. 2007;26:235–49.PubMedCrossRefGoogle Scholar
  7. 7.
    Jong RA, Yaffe MJ, Skarpathiotakis M, et al. Contrast-enhanced digital mammography: initial clinical experience. Radiology. 2003;228(3):842–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Lewin JM, Isaacs PK, Vance V, Larke FJ. Dual-energy contrast-enhanced digital subtraction mammography: feasibility. Radiology. 2003;229(1):261–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Dromain C, Balleyguier C, Adler G, Garbay JR, Delaloge S. Contrast-enhanced digital mammography. Eur J Radiol. 2009;69(1):34–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Diekmann F, Freyer M, Diekmann S, et al. Evaluation of contrast-enhanced digital mammography. Eur J Radiol. 2011;78(1):112–21.PubMedCrossRefGoogle Scholar
  11. 11.
    Jochelson M. Contrast-enhanced digital mammography. Radiol Clin North Am. 2014;52(3):609–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Diekmann F, Marx C, Jong R, Dromain C, Toledano AY, Bick U. Diagnostic accuracy of contrast enhanced digital mammography as an adjunct to mammography. Eur Radiol. 2007;17(12):3086–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Dromain C, Thibault F, Muller S, et al. Dual-energy contrast-enhanced digital mammography: initial clinical results. Eur J Radiol. 2011;21:565–74.CrossRefGoogle Scholar
  14. 14.
    Jochelson MS, Dershaw DD, Sung JS, et al. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology. 2013;266:743–51.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sogani J, Morris EA, Kaplan JB, et al. Comparison of background parenchymal enhancement at contrast-enhanced spectral mammography and breast MR imaging. Radiology. 2017;282(1):63–73. Scholar
  16. 16.
    Bhimani C, Matta D, G Roth R, et al. Contrast enhanced spectral mammography: techniques, indications and clinical applications. Acad Radiol. 2017;24:84–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Lalji U, Lobbes M. Contrast-enhanced dual-energy mammography: a promising new imaging tool in breast cancer detection. Womens Health. 2014;10(3):289–98.Google Scholar
  18. 18.
    Lobbes MB, Smidt ML, Houwers J, et al. Contrast-enhanced mammography: techniques, current results, and potential indications. Clin Radiol. 2013;68:935–44.PubMedCrossRefGoogle Scholar
  19. 19.
    Hobbs MM, Taylor DB, Buzynski S, Peake RE. Contrast-enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): patient preferences and tolerance. J Med Imaging Radiat Oncol. 2015;59(3):300–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Silverstein MJ, Poller DN, Waisman JR, et al. Prognostic classification of breast ductal carcinoma-in-situ. Lancet. 1995;345(8958):1154–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Lagios MD. Heterogeneity of duct carcinoma in situ (DCIS): relationship of grade and subtype analysis to local recurrence and risk of invasive transformation. Cancer Lett. 1995;90(1):97–102.PubMedCrossRefGoogle Scholar
  22. 22.
    Dershaw DD, Abramson A, Kinne DW. Ductal carcinoma in situ: mammographic findings and clinical implications. Radiology. 1989;170(2):411–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Holland R, Hendriks JH, Vebeek AL, Mravunac M, Schuurmans Stekhoven JH. Extent, distribution, and mammographic/histological correlations of breast ductal carcinoma in situ. Lancet. 1990;335(8688):519–22.PubMedCrossRefGoogle Scholar
  24. 24.
    Yang WT, Tse GMK. Sonographic, mammographic, and histopathologic correlation of symptomatic ductal carcinoma in situ. AJR Am J Roentgenol. 2004;182(1):101–10.PubMedCrossRefGoogle Scholar
  25. 25.
    Douglas-Jones AG, Morgan JM, Appleton MA, et al. Consistency in the observation of features used to classify duct carcinoma in situ (DCIS) of the breast. J Clin Pathol. 2000;53(8):596–602.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Consensus Conference Committee. Consensus conference on the classification of ductal carcinoma in situ. Cancer. 1997;80(9):1798–802.CrossRefGoogle Scholar
  27. 27.
    Lee KS, Han BH, Chun YK, Kim HS, Kim EE. Correlation between mammographic manifestations and averaged histopathologic nuclear grade using prognosis-predict scoring system for the prognosis of ductal carcinoma in situ. Clin Imaging. 1999;23(6):339–46.PubMedCrossRefGoogle Scholar
  28. 28.
    Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004;233(3):830–49.PubMedCrossRefGoogle Scholar
  29. 29.
    Orel SG, Mendonca MH, Reynolds C, Schnall MD, Solin LJ, Sullivan DC. MR imaging of ductal carcinoma in situ. Radiology. 1997;202(2):413–20.PubMedCrossRefGoogle Scholar
  30. 30.
    Mokbel K. Current management of ductal carcinoma in situ of the breast. Int J Clin Oncol. 2003;8(1):18–22.PubMedCrossRefGoogle Scholar
  31. 31.
    Kuhl CK, Schrading S, Bieling B, et al. MRI for diagnosis of pure ductal carcinoma in situ: a prospective observational study. Lancet. 2007;370:485–92.PubMedCrossRefGoogle Scholar
  32. 32.
    Yamada T, Mori N, Watanabe M, et al. Radiologic-pathologic correlation of ductal carcinoma in situ. Radiographics. 2010;30(5):1183–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Tozaki M, Igarashi T, Fukuda K. Breast MRI using the VIBE sequence: clustered ring enhancement in the differential diagnosis of lesions showing non-mass like enhancement. AJR Am J Roentgenol. 2006;187(2):313–21.PubMedCrossRefGoogle Scholar
  34. 34.
    Morakkabati-Spitz N, Leutner C, Schild H, Traeber F, Kuhl C. Diagnostic usefulness of segmental and linear enhancement in dynamic breast MRI. Eur Radiol. 2005;15(9):2010–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Mossa-Basha M, Fundaro GM, Shah BA, Ali S, Pantelic MV. Ductal carcinoma in situ of the breast: MR imaging findings with histopathologic correlation. Radiographics. 2010;30(6):1673–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Heywang-Köbrunner SH. Contrast-enhanced magnetic resonance imaging of the breast. Invest Radiol. 1994;29(1):94–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Cheung YC, Juan YH, Lin YC, et al. Dual-Energy Contrast enhanced spectral mammography: enhancement analysis on BI-RADS 4 non mass microcalcifications in screened women. PLoSOne. 2016;11(9):e0162740. Scholar
  38. 38.
    Luczynska E, Niemiec J, Hendrick E, et al. Degree of enhancement on contrast enhanced spectral mammography (CESM) and lesion type on mammography (MG): comparison based on histological results. Med Sci Monit. 2016 Oct 21;22:3886–93.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fallenberg E, Dromain C, Diekmann F, et al. Contrast-enhanced spectral mammography versus MRI: initial results in the detection of breast cancer and assessment of tumour size. Eur J Radiol. 2014;24:256–64.CrossRefGoogle Scholar
  40. 40.
    Carriero A, Ambrossini R, Mattei PA, et al. Magnetic resonance of the breast: correlation between enhancement patterns and microvessel density in malignant tumors. J Exp Clin Cancer Res. 2002;21(Suppl 3):83–7.PubMedGoogle Scholar
  41. 41.
    Yamaguchi R, Furusawa H, Nakahara H, et al. Clinicopathological study of invasive ductal carcinoma with large central acellular zone: special reference to magnetic resonance imaging findings. Pathol Int. 2008;58(1):26–30.PubMedCrossRefGoogle Scholar
  42. 42.
    World Health Organization. Histological typing of breast tumors. Tumori. 1982;68:181–98.CrossRefGoogle Scholar
  43. 43.
    Okafuji T, Yabuuchi H, Sakai S, et al. MR imaging features of pure mucinous carcinoma of the breast. Eur J Radiol. 2006;60(3):405–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Kawashima M, Tamaki Y, Nonaka T, et al. MR imaging of mucinous carcinoma of the breast. AJR Am J Roentgenol. 2002;179(1):179–83.PubMedCrossRefGoogle Scholar
  45. 45.
    Soo MS, Williford ME, Walsh R, Bentley RC, Kornguth PJ. Papillary carcinoma of the breast: imaging findings. AJR Am J Roentgenol. 1995;164(2):321–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Lam WW, Tang AP, Tse G, Chu WC. Radiology-pathology conference: papillary carcinoma of the breast. Clin Imaging. 2005;29(6):396–400.PubMedCrossRefGoogle Scholar
  47. 47.
    Kuhl CK, Klaschik S, Mielcarek P, Gieseke J, Wardelmann E, Schild HH. Do T2-weighted pulse sequences help with the differential diagnosis of enhancing lesions in dynamic breast MRI? J Magn Reson Imaging. 1999;9(2):187–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6(3):R149–56.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dixon JM, Anderson TJ, Page DL, Lee D, Duffy SW, Stewart HJ. Infiltrating lobular carcinoma of the breast: an evaluation of the incidence and consequence of bilateral disease. Br J Surg. 1983;70(9):513–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Lopez JK, Bassett LW. Invasive lobular carcinoma of the breast: spectrum of mamographic, US, and MR imaging findings. Radiographics. 2009;29:165–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Paramagul CP, Helvie MA, Adler DD. Invasive lobular carcinoma: sonographic appearance and role of sonography in improving diagnostic sensitivity. Radiology. 1995;195(1):231–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Butler RS, Venta LA, Wiley EL, Ellis RL, Dempsey PJ, Rubin E. Sonographic evaluation of infiltrating lobular carcinoma. AJR Am J Roentgenol. 1999;172(2):325–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Selinko VL, Middleton LP, Dempsey PJ. Role of sonography in diagnosing and staging invasive lobular carcinoma. J Clin Ultrasound. 2004;32(7):323–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Mann RM, Hoogeveen YL, Blickman JG, Boetes C. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: a review of existing literature. Breast Cancer Res Treat. 2008;107(1):1–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Weinstein SP, Orel SG, Heller R, et al. MR imaging of the breast in patients with invasive lobular carcinoma. AJR Am J Roentgenol. 2001;176(2):399–406.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Diagnostic Senology Unit, Department of RadiologyAzienda Ospedaliero Universitaria CareggiFlorenceItaly
  2. 2.Department of Medicine and Health ScienceUniversity of MoliseCampobassoItaly

Personalised recommendations