Advertisement

Variant-Based Decidable Satisfiability in Initial Algebras with Predicates

  • Raúl GutiérrezEmail author
  • José Meseguer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10855)

Abstract

Decision procedures can be either theory-specific, e.g., Presburger arithmetic, or theory-generic, applying to an infinite number of user-definable theories. Variant satisfiability is a theory-generic procedure for quantifier-free satisfiability in the initial algebra of an order-sorted equational theory \((\varSigma ,E \cup B)\) under two conditions: (i) \(E \cup B\) has the finite variant property and B has a finitary unification algorithm; and (ii) \((\varSigma ,E \cup B)\) protects a constructor subtheory \((\varOmega ,E_{\varOmega } \cup B_{\varOmega })\) that is OS-compact. These conditions apply to many user-definable theories, but have a main limitation: they apply well to data structures, but often do not hold for user-definable predicates on such data structures. We present a theory-generic satisfiability decision procedure, and a prototype implementation, extending variant-based satisfiability to initial algebras with user-definable predicates under fairly general conditions.

Keywords

Finite variant property (fvp) OS-compactness User-definable predicates Decidable validity and satisfiability in initial algebras 

References

  1. 1.
    Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based satisfiability procedures. TOCL 10(1), 4 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability procedures. I&C 183(2), 140–164 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfiability in the theory of inductive data types. JSAT 3, 21–46 (2007)zbMATHGoogle Scholar
  4. 4.
    Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40885-4_23CrossRefGoogle Scholar
  5. 5.
    Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74113-8CrossRefzbMATHGoogle Scholar
  6. 6.
    Cholewa, A., Meseguer, J., Escobar, S.: Variants of variants and the finite variant property. Technical report, CS Dept. University of Illinois at Urbana-Champaign (2014). http://hdl.handle.net/2142/47117
  7. 7.
    Ciobaca., S.: Verification of composition of security protocols with applications to electronic voting. Ph.D. thesis, ENS Cachan (2011)Google Scholar
  8. 8.
    Comon, H.: Complete axiomatizations of some quotient term algebras. TCS 118(2), 167–191 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-32033-3_22CrossRefGoogle Scholar
  10. 10.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science, North-Holland, vol. B, pp. 243–320 (1990)Google Scholar
  11. 11.
    Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for lists, multisets, compact lists, and sets. TOCL 9(3), 15 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Adding decision procedures to SMT solvers using axioms with triggers. JAR 56(4), 387–457 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. JALP 81, 898–928 (2012)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987).  https://doi.org/10.1007/BFb0014969CrossRefGoogle Scholar
  15. 15.
    Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. TCS 105, 217–273 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gutiérrez, R., Meseguer, J.: Variant satisfiability in initial algebras with predicates. Technical report, CS Department, University of Illinois at Urbana-Champaign (2018). http://hdl.handle.net/2142/99039
  17. 17.
    Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equations. SICOMP 15, 1155–1194 (1986)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kroening, D., Strichman, O.: Decision Procedures - An algorithmic point of view. Texts in TCS. An EATCS Series. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-74105-3CrossRefzbMATHGoogle Scholar
  19. 19.
    Lynch, C., Morawska, B.: Automatic decidability. In: Proceedings of LICS 2002, p. 7. IEEE Computer Society (2002)Google Scholar
  20. 20.
    Lynch, C., Tran, D.-K.: Automatic decidability and combinability revisited. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 328–344. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73595-3_22CrossRefGoogle Scholar
  21. 21.
    Meseguer, J.: Variant-based satisfiability in initial algebras. SCP 154, 3–41 (2018)Google Scholar
  22. 22.
    Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. TCS 672, 1–35 (2017)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Meseguer, J., Goguen, J.: Initiality, induction and computability. In: Algebraic Methods in Semantics, Cambridge, pp. 459–541 (1985)Google Scholar
  24. 24.
    Meseguer, J., Goguen, J.: Order-sorted algebra solves the constructor-selector, multiple representation and coercion problems. I&C 103(1), 114–158 (1993)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. TOPLAS 1(2), 245–257 (1979)CrossRefGoogle Scholar
  26. 26.
    Shostak, R.E.: Deciding combinations of theories. J. ACM 31(1), 1–12 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. In: Lucanu, D. (ed.) WRLA 2016. LNCS, vol. 9942, pp. 167–184. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44802-2_10CrossRefGoogle Scholar
  28. 28.
    Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: Proceedings of LICS 2001, pp. 29–37. IEEE (2001)Google Scholar
  29. 29.
    Tushkanova, E., Giorgetti, A., Ringeissen, C., Kouchnarenko, O.: A rule-based system for automatic decidability and combinability. SCP 99, 3–23 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universitat Politècnica de ValènciaValenciaSpain
  2. 2.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations