Advertisement

Nominal C-Unification

  • Mauricio Ayala-Rincón
  • Washington de Carvalho-Segundo
  • Maribel Fernández
  • Daniele Nantes-Sobrinho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10855)

Abstract

Nominal unification is an extension of first-order unification that takes into account the \(\alpha \)-equivalence relation generated by binding operators, following the nominal approach. We propose a sound and complete procedure for nominal unification with commutative operators, or nominal C-unification for short, which has been formalised in Coq. The procedure transforms nominal C-unification problems into simpler (finite families) of fixed point constraints, whose solutions can be generated by algebraic techniques on combinatorics of permutations.

References

  1. 1.
    Aoto, T., Kikuchi, K.: A rule-based procedure for equivariant nominal unification. In: Pre-proceeding of Higher-Order Rewriting (HOR), pp. 1–5 (2016)Google Scholar
  2. 2.
    Aoto, T., Kikuchi, K.: Nominal confluence tool. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 173–182. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_12CrossRefGoogle Scholar
  3. 3.
    Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.: A formalisation of nominal equivalence with associative-commutative function symbols. ENTCS 332, 21–38 (2017)MATHGoogle Scholar
  4. 4.
    Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D.: On solving nominal fixpoint equations. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 209–226. Springer, Cham (2017)CrossRefGoogle Scholar
  5. 5.
    Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: Nominal narrowing. In: Proceedings of the 1st International Conference on Formal Structures for Computation and Deduction (FSCD). LIPIcs, vol. 52, pp. 11:1–11:17 (2016)Google Scholar
  6. 6.
    Ayala-Rincón, M., Fernández, M., Rocha-oliveira, A.C.: Completeness in PVS of a nominal unification algorithm. ENTCS 323, 57–74 (2016)MathSciNetMATHGoogle Scholar
  7. 7.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge UP, New York (1998)CrossRefGoogle Scholar
  8. 8.
    Braibant, T., Pous, D.: Tactics for reasoning modulo AC in Coq. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 167–182. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Calvès, C.F.: Complexity and implementation of nominal algorithms. Ph.D Thesis, King’s College London (2010)Google Scholar
  10. 10.
    Calvès, C.F., Fernández, M.: Implementing nominal unification. ENTCS 176(1), 25–37 (2007)MATHGoogle Scholar
  11. 11.
    Calvès, C., Fernández, M.: The first-order nominal link. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 234–248. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Cheney, J.: \(\alpha \)Prolog Users Guide & Language Reference Version 0.3 DRAFT (2003)Google Scholar
  13. 13.
    Cheney, J.: Equivariant unification. J. Autom. Reasoning 45(3), 267–300 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Clouston, R.A., Pitts, A.M.: Nominal equational logic. ENTCS 172, 223–257 (2007)MathSciNetMATHGoogle Scholar
  15. 15.
    Contejean, E.: A certified AC matching algorithm. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 70–84. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Fernández, M., Gabbay, M.J.: Nominal rewriting. Inf. Comput. 205(6), 917–965 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fernández, M., Gabbay, M.J.: Closed nominal rewriting and efficiently computable nominal algebra equality. In: Proceedings of the 5th International Workshop on Logical Frameworks and Meta-languages: Theory and Practice (LFMTP). EPTCS, vol. 34, pp. 37–51 (2010)CrossRefGoogle Scholar
  18. 18.
    Fernández, M., Gabbay, M.J., Mackie, I.: Nominal rewriting systems. In: Proceedings of the 6th International Conference on Principles and Practice of Declarative Programming (PPDP), pp. 108–119. ACM Press (2004)Google Scholar
  19. 19.
    Gabbay, M.J., Mathijssen, A.: Nominal (Universal) algebra: equational logic with names and binding. J. Logic Comput. 19(6), 1455–1508 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects Comput. 13(3–5), 341–363 (2002)CrossRefGoogle Scholar
  21. 21.
    Kapur, D., Narendran, P.: Matching unification and complexity. SIGSAM Bull. 21(4), 6–9 (1987)CrossRefGoogle Scholar
  22. 22.
    Kumar, R., Norrish, M.: (Nominal) Unification by recursive descent with triangular substitutions. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 51–66. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of higher order expressions with recursive let. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 328–344. Springer, Cham (2017)CrossRefGoogle Scholar
  24. 24.
    Levy, J., Villaret, M.: An efficient nominal unification algorithm. In: Proceedings of the 21st International Conference on Rewriting Techniques and Applications (RTA). LIPIcs, vol. 6, pp. 209–226 (2010)Google Scholar
  25. 25.
    Nipkow, T.: Equational reasoning in Isabelle. Sci. Comput. Program. 12(2), 123–149 (1989)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge UP, Cambridge (2013)CrossRefGoogle Scholar
  27. 27.
    Sagan, B.E.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. Springer, New York (2001)CrossRefGoogle Scholar
  28. 28.
    Siekmann, J.: Unification of commutative terms. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 22–29. Springer, Heidelberg (1979).  https://doi.org/10.1007/3-540-09519-5_53CrossRefGoogle Scholar
  29. 29.
    Urban, C.: Nominal unification revisited. In: Proceedings of the 24th International Workshop on Unification (UNIF). EPTCS, vol. 42, pp. 1–11 (2010)CrossRefGoogle Scholar
  30. 30.
    Urban, C., Pitts, A.M., Gabbay, M.J.: Nominal unification. Theor. Comput. Sci. 323(1–3), 473–497 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Depts. de Matemática e Ciência da ComputaçãoUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Department of InformaticsKing’s College LondonLondonUK

Personalised recommendations