Advertisement

Copper—A Modern Bioelement

  • Marc Solioz
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

From the analysis of the evolution of copper-containing enzymes, it emerges that copper is a modern bioelement. It was not used as an enzyme cofactor before the advent of oxygen evolution. In the anoxic world, copper in the biosphere was in its reduced, Cu+ state, which formed insoluble copper sulfide, promoted by the abundance of hydrogen sulfide in the atmosphere. Once the world became oxic, Cu+ was oxidized to Cu2+, which is readily soluble in the aqueous phase. The ensuing bioavailability of copper led to the evolution of cuproenzymes and copper-responsive regulators of gene expression. Indeed, all known copper-containing enzymes catalyze redox reactions involving oxygen in one form or another. Copper detoxification systems, on the other hand, have an earlier, independent evolutionary origin. The redox-active nature of copper of course makes it an ideal cofactor for redox enzymes, but also pose special experimental problems, which are discussed.

Keywords

Evolution Copper Bioelement Anoxic world Cuproenzymes Primordial Copper sulfide 

References

  1. 1.
    Crichton RR, Pierre J-L (2001) Old iron, young copper: from Mars to Venus. Biometals 14:99–112CrossRefGoogle Scholar
  2. 2.
    Fraústo da Silva JJR, Williams RJP (1993) The biological chemistry of the elements. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Herrick J, Sclavi B (2007) Ribonucleotide reductase and the regulation of DNA replication: an old story and an ancient heritage. Mol Microbiol 63:22–34CrossRefGoogle Scholar
  4. 4.
    Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726CrossRefGoogle Scholar
  5. 5.
    Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98CrossRefGoogle Scholar
  6. 6.
    Dupont CL, Butcher A, Valas RE et al (2010) History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proc Natl Acad Sci USA 107:10567–10572CrossRefGoogle Scholar
  7. 7.
    Baureder M, Reimann R, Hederstedt L (2012) Contribution of catalase to hydrogen peroxide resistance in Enterococcus faecalis. FEMS Microbiol Lett 331:160–164CrossRefGoogle Scholar
  8. 8.
    Ridge PG, Zhang Y, Gladyshev VN (2008) Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen. PLoS ONE 3:e1378CrossRefGoogle Scholar
  9. 9.
    Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185CrossRefGoogle Scholar
  10. 10.
    Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance-new insights and applications. Metallomics 3:1109–1118CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Gladyshev VN (2010) General trends in trace element utilization revealed by comparative genomic analyses of Co, Cu, Mo, Ni and Se. J Biol Chem 285:3393–3405CrossRefGoogle Scholar
  12. 12.
    Gladyshev VN, Zhang Y (2013) Comparative genomics analysis of the metallomes. In: Banci L (ed) Metallomics and the Cell. Springer, HeidelbergGoogle Scholar
  13. 13.
    Irving H, Williams RJP (1953) The stability of transition-metal complexes. J Chem Soc 1953:3192–3210CrossRefGoogle Scholar
  14. 14.
    Pearson RG (1968) Hard and soft acid and bases, HSAB, part I. J Chem Educ 45:581–587CrossRefGoogle Scholar
  15. 15.
    Hans M, Mathews S, Mücklich F et al (2016) Physicochemical properties of copper important for its antibacterial activity and development of a unified model. Biointerphases 11:018902-1–018902-8CrossRefGoogle Scholar
  16. 16.
    Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339CrossRefGoogle Scholar
  17. 17.
    Saier MH Jr, Tam R, Reizer A et al (1994) Two novel families of bacterial membrane proteins concerned with nodulation, cell division and transport. Mol Microbiol 11:841–847CrossRefGoogle Scholar
  18. 18.
    Changela A, Chen K, Xue Y et al (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301:1383–1387CrossRefGoogle Scholar
  19. 19.
    Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762CrossRefGoogle Scholar
  20. 20.
    Fahey RC, Brown WC, Adams WB et al (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129PubMedPubMedCentralGoogle Scholar
  21. 21.
    Mana-Capelli S, Mandal AK, Arguello JM (2003) Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. J Biol Chem 278:40534–40541CrossRefGoogle Scholar
  22. 22.
    Hemmerich P, Sigwart C (1963) Cu(CH3CN)2+, ein Mittel zum Studium homogener Reaktionen des einwertigen Kupfers in wässriger Lösung. Experientia 19:488–489CrossRefGoogle Scholar
  23. 23.
    Bissig K-D, Voegelin TC, Solioz M (2001) Tetrathiomolybdate inhibition of the Enterococcus hirae CopB copper ATPase. FEBS Lett 507:367–370CrossRefGoogle Scholar
  24. 24.
    Brewer GJ, Askari F, Dick RB et al (2009) Treatment of Wilson’s disease with tetrathiomolybdate: V. Control of free copper by tetrathiomolybdate and a comparison with trientine. Transl Res 154:70–77CrossRefGoogle Scholar
  25. 25.
    Bell PF, Chen Y, Potts WE et al (1991) A reevaluation of the Fe(III), Ca(II), Zn(II), and proton formation constants of 4,7-diphenyl-1,10-phenanthrolinedisulfonate. Biol Trace Elem Res 30:125–144CrossRefGoogle Scholar
  26. 26.
    McPhail DB, Goodman BA (1984) Tris buffer—a case for caution in its use in copper-containing systems. Biochem J 221:559–560CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department Clinical ResearchUniversity of BernBernSwitzerland

Personalised recommendations