Advertisement

Universality in Freezing Cellular Automata

  • Florent Becker
  • Diego Maldonado
  • Nicolas Ollinger
  • Guillaume Theyssier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10936)

Abstract

Cellular Automata have been used since their introduction as a discrete tool of modelization. In many of the physical processes one may modelize thus (such as bootstrap percolation, forest fire or epidemic propagation models, life without death, etc), each local change is irreversible. The class of freezing Cellular Automata (FCA) captures this feature. In a freezing cellular automaton the states are ordered and the cells can only decrease their state according to this “freezing-order”.

We investigate the dynamics of such systems through the questions of simulation and universality in this class: is there a Freezing Cellular Automaton (FCA) that is able to simulate any Freezing Cellular Automata, i.e. an intrinsically universal FCA? We show that the answer to that question is sensitive to both the number of changes cells are allowed to make, and geometric features of the space. In dimension 1, there is no universal FCA. In dimension 2, if either the number of changes is at least 2, or the neighborhood is Moore, then there are universal FCA. On the other hand, there is no universal FCA with one change and Von Neumann neighborhood. We also show that monotonicity of the local rule with respect to the freezing-order (a common feature of bootstrap percolation) is also an obstacle to universality.

References

  1. 1.
    Banks, E.R.: Universality in cellular automata. In: Eleventh Annual Symposium on Switching and Automata Theory, Santa Monica, California. IEEE (1970)Google Scholar
  2. 2.
    Bollobás, B., Smith, P., Uzzell, A.: Monotone cellular automata in a random environment. Comb. Probab. Comput. 24(4), 687–722 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C: Solid State Phys. 12, L31–L35 (1979)CrossRefGoogle Scholar
  4. 4.
    Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking I: an abstract theory of bulking. Theor. Comput. Sci. 412(30), 3866–3880 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking II: classifications of cellular automata. Theor. Comput. Sci. 412(30), 3881–3905 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: FOCS 2012 Proceedings, pp. 302–310 (2012)Google Scholar
  7. 7.
    Fuentes, M.A., Kuperman, M.N.: Cellular automata and epidemiological models with spatial dependence. Physica A: Stat. Mech. Appl. 267(3–4), 471–486 (1999)CrossRefGoogle Scholar
  8. 8.
    Goles, E., Montealegre-Barba, P., Todinca, I.: The complexity of the bootstraping percolation and other problems. Theor. Comput. Sci. 504, 73–82 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Goles, E., Ollinger, N., Theyssier, G.: Introducing freezing cellular automata. In: Kari, J., Törmä, I., Szabados, M. (eds.) Exploratory Papers of Cellular Automata and Discrete Complex Systems (AUTOMATA 2015), pp. 65–73 (2015)Google Scholar
  10. 10.
    Gravner, J., Griffeath, D.: Cellular automaton growth on Z2: theorems, examples, and problems. Adv. Appl. Math. 21(2), 241–304 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Griffeath, D., Moore, C.: Life without death is P-complete. Complex Syst. 10, 437–448 (1996)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Holland, J.H.: A universal computer capable of executing an arbitrary number of subprograms simultaneously. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 264–276. University of Illinois Press, Champaign (1970)Google Scholar
  13. 13.
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)CrossRefGoogle Scholar
  14. 14.
    Meunier, P.-E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: SODA 2014 Proceedings, pp. 752–771 (2014)Google Scholar
  15. 15.
    Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)Google Scholar
  16. 16.
    Ollinger, N.: Universalities in cellular automata. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 189–229. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-540-92910-9_6CrossRefGoogle Scholar
  17. 17.
    Ollinger, N., Richard, G.: Four states are enough!. Theor. Comput. Sci. 412(1–2), 22–32 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Thatcher, J.W.: Universality in the von neumman cellular model. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 132–186. University of Illinois Press, Champaign (1970)Google Scholar
  19. 19.
    Ulam, S.M.: On some mathematical problems connected with patterns of growth of figures. In: Bukrs, A.W. (ed.) Essays on Cellular Automata, pp. 219–231. University of Illinois Press, Champaign (1970)Google Scholar
  20. 20.
    Vollmar, R.: On cellular automata with a finite number of state changes. In: Knödel, W., Schneider, H.-J. (eds.) Parallel Processes and Related Automata. Computing Supplementum, vol. 3, pp. 181–191. Springer, Vienna (1981).  https://doi.org/10.1007/978-3-7091-8596-4_13CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Florent Becker
    • 1
  • Diego Maldonado
    • 1
  • Nicolas Ollinger
    • 1
  • Guillaume Theyssier
    • 2
  1. 1.Université Orléans, LIFO EA 4022OrléansFrance
  2. 2.Institut de Mathématiques de Marseille (Université Aix Marseille, CNRS, Centrale Marseille)MarseilleFrance

Personalised recommendations