Advertisement

Algorithm Analysis Through Proof Complexity

  • Massimo Lauria
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10936)

Abstract

Proof complexity can be a tool for studying the efficiency of algorithms. By proving a single lower bound on the length of certain proofs, we can get running time lower bounds for a wide category of algorithms. We survey the proof complexity literature that adopts this approach relative to two \(\mathsf {NP}\)-problems: k-clique and 3-coloring.

References

  1. 1.
    Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2), 125–134 (1992)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Atserias, A., Bonacina, I., de Rezende, S.F., Lauria, M., Nordström, J., Razborov, A.A.: Clique is hard on average for regular resolution. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC 2008) (2018, to appear)Google Scholar
  3. 3.
    Atserias, A., Ochremiak, J.: Proof complexity meets algebra. In: ICALP 2017. Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 110:1–110:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017)Google Scholar
  4. 4.
    Bayer, D.A.: The division algorithm and the Hilbert scheme. Ph.D. thesis, Harvard University, Cambridge, MA, USA, June 1982. https://www.math.columbia.edu/~bayer/papers/Bayer-thesis.pdf
  5. 5.
    Beame, P., Culberson, J.C., Mitchell, D.G., Moore, C.: The resolution complexity of random graph \(k\)-colorability. Discrete Appl. Math. 153(1–3), 25–47 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Beame, P., Impagliazzo, R., Krajíček, J., Pitassi, T., Pudlák, P.: Lower bounds on Hilbert’s Nullstellensatz and propositional proofs. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp. 794–806, November 1994Google Scholar
  7. 7.
    Beame, P., Impagliazzo, R., Sabharwal, A.: The resolution complexity of independent sets and vertex covers in random graphs. Comput. Complex. 16(3), 245–297 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beame, P., Pitassi, T.: Propositional proof complexity: past, present, and future. In: Current Trends in Theoretical Computer Science, pp. 42–70. World Scientific Publishing (2001)Google Scholar
  9. 9.
    Beigel, R., Eppstein, D.: 3-coloring in time \(O(1. 3289^n)\). J. Algorithms 54(2), 168–204 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Beyersdorff, O., Galesi, N., Lauria, M.: Parameterized complexity of DPLL search procedures. ACM Trans. Comput. Log. 14(3), 20:1–20:21 (2013). Preliminary version in SAT 2011MathSciNetCrossRefGoogle Scholar
  11. 11.
    Blake, A.: Canonical expressions in Boolean algebra. Ph.D. thesis, University of Chicago (1938)Google Scholar
  12. 12.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)CrossRefGoogle Scholar
  13. 13.
    Buresh-Oppenheim, J., Clegg, M., Impagliazzo, R., Pitassi, T.: Homogenization and the polynomial calculus. Comput. Complex. 11(3–4), 91–108 (2002). Preliminary version in ICALP 2000MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chvátal, V.: Determining the stability number of a graph. SIAM J. Comput. 6(4), 643–662 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to find proofs of unsatisfiability. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC 1996), pp. 174–183, May 1996Google Scholar
  16. 16.
    Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971), pp. 151–158 (1971)Google Scholar
  17. 17.
    Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Log. 44, 36–50 (1979)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cook, W., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discrete Appl. Math. 18(1), 25–38 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3rd edn. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-35651-8CrossRefzbMATHGoogle Scholar
  20. 20.
    De Loera, J.A.: Gröbner bases and graph colorings. Beiträge zur Algebra und Geometrie 36(1), 89–96 (1995). https://www.emis.de/journals/BAG/vol.36/no.1/MathSciNetzbMATHGoogle Scholar
  21. 21.
    De Loera, J.A., Margulies, S., Pernpeintner, M., Riedl, E., Rolnick, D., Spencer, G., Stasi, D., Swenson, J.: Graph-coloring ideals: Nullstellensatz certificates, Gröbner bases for chordal graphs, and hardness of Gröbner bases. In: Proceedings of the 40th International Symposium on Symbolic and Algebraic Computation (ISSAC 2015), pp. 133–140, July 2015Google Scholar
  22. 22.
    De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Hilbert’s Nullstellensatz and an algorithm for proving combinatorial infeasibility. In: Proceedings of the 21st International Symposium on Symbolic and Algebraic Computation (ISSAC 2008), pp. 197–206, July 2008Google Scholar
  23. 23.
    De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Computing infeasibility certificates for combinatorial problems through Hilbert’s Nullstellensatz. J. Symb. Comput. 46(11), 1260–1283 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    De Loera, J.A., Lee, J., Margulies, S., Onn, S.: Expressing combinatorial problems by systems of polynomial equations and Hilbert’s Nullstellensatz. Comb. Probab. Comput. 18(04), 551–582 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Galesi, N., Lauria, M.: On the automatizability of polynomial calculus. Theory Comput. Syst. 47(2), 491–506 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Galesi, N., Lauria, M.: Optimality of size-degree trade-offs for polynomial calculus. ACM Trans. Comput. Log. 12(1), 4:1–4:22 (2010)CrossRefGoogle Scholar
  27. 27.
    Gödel, K.: Ein brief an Johann von Neumann, 20. März, 1956. In: Clote, P., Krajíček, J. (eds.) Arithmetic, Proof Theory, and Computational Complexity, pp. 7–9. Oxford University Press, Oxford (1993)Google Scholar
  28. 28.
    Hajós, G.: Üver eine konstruktion nicht n-farbbarer graphen. Wissenschaftliche Zeitschrift der Martin-Luther-Universitat Halle-Wittenberg, A 10, 116–117 (1961)Google Scholar
  29. 29.
    Haken, A.: The intractability of resolution. Theoret. Comput. Sci. 39, 297–308 (1985)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Hillar, C.J., Windfeldt, T.: Algebraic characterization of uniquely vertex colorable graphs. J. Comb. Theory Ser. B 98(2), 400–414 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Husfeldt, T.: Graph colouring algorithms. In: Beineke, L.W., Wilson, R.J. (eds.) Topics in Chromatic Graph Theory, Encyclopedia of Mathematics and its Applications, pp. 277–303. Cambridge University Press, May 2015. Chap. 13Google Scholar
  32. 32.
    Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Mathematics and its Applications, vol. 60. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  33. 33.
    Lauria, M., Nordström, J.: Graph colouring is hard for algorithms based on Hilbert’s Nullstellensatz and Gröbner bases. In: O’Donnell, R. (ed.) 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 79, pp. 2:1–2:20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2017)Google Scholar
  34. 34.
    Lauria, M., Pudlák, P., Rödl, V., Thapen, N.: The complexity of proving that a graph is Ramsey. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 684–695. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39206-1_58CrossRefGoogle Scholar
  35. 35.
    Lauria, M., Pudlák, P., Rödl, V., Thapen, N.: The complexity of proving that a graph is Ramsey. Combinatorica 37(2), 253–268 (2017). Preliminary version in ICALP 2013MathSciNetCrossRefGoogle Scholar
  36. 36.
    Levin, L.A.: Universal sequential search problems. Probl. Peredachi Informatsii 9(3), 115–116 (1973)zbMATHGoogle Scholar
  37. 37.
    Lokshtanov, D., Marx, D., Saurabh, S., et al.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 3(105), 41–72 (2013)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Lovász, L.: Stable sets and polynomials. Discrete Math. 124(1–3), 137–153 (1994)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Matiyasevich, Y.V.: A criterion for vertex colorability of a graph stated in terms of edge orientations. Diskretnyi Analiz 26, 65–71 (1974). http://logic.pdmi.ras.ru/~yumat/papers/22paper/. English translation of the Russian originalGoogle Scholar
  40. 40.
    Matiyasevich, Y.V.: Some algebraic methods for calculating the number of colorings of a graph. J. Math. Sci. 121(3), 2401–2408 (2004)MathSciNetCrossRefGoogle Scholar
  41. 41.
    McCreesh, C.: Solving hard subgraph problems in parallel. Ph.D. thesis, University of Glasgow (2017)Google Scholar
  42. 42.
    McDiarmid, C.: Colouring random graphs. Ann. Oper. Res. 1(3), 183–200 (1984)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Mnuk, M.: Representing graph properties by polynomial ideals. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2001, pp. 431–444. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-642-56666-0_33CrossRefGoogle Scholar
  44. 44.
    Nordström, J.: A (biased) proof complexity survey for SAT practitioners. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 1–6. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09284-3_1CrossRefGoogle Scholar
  45. 45.
    Nordström, J.: On the interplay between proof complexity and SAT solving. ACM SIGLOG News 2(3), 19–44 (2015)Google Scholar
  46. 46.
    Östergård, P.R.J.: A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120(1), 197–207 (2002)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Pevzner, P.A., Sze, S.-H., et al.: Combinatorial approaches to finding subtle signals in DNA sequences. In: ISMB, vol. 8, pp. 269–278 (2000)Google Scholar
  48. 48.
    Pitassi, T., Urquhart, A.: The complexity of the Hajós calculus. SIAM J. Discrete Math. 8(3), 464–483 (1995)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Prosser, P.: Exact algorithms for maximum clique: a computational study. Algorithms 5(4), 545–587 (2012)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Razborov, A.A.: Lower bounds for the monotone complexity of some Boolean functions. Soviet Math. Dokl. 31(2), 354–357 (1985). English translation of a paper in Doklady Akademii Nauk SSSRzbMATHGoogle Scholar
  51. 51.
    Rossman, B.: On the constant-depth complexity of \(k\)-clique. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 721–730. ACM (2008)Google Scholar
  52. 52.
    Rossman, B.: The monotone complexity of \(k\)-clique on random graphs. In: 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, 23–26 October 2010, Las Vegas, Nevada, USA, pp. 193–201. IEEE Computer Society (2010)Google Scholar
  53. 53.
    Segerlind, N.: The complexity of propositional proofs. Bull. Symb. Log. 13(4), 417–481 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Scienze StatisticheUniversità “La Sapienza” di RomaRomeItaly

Personalised recommendations