Advertisement

A Real-Time Algorithm for Movement Assessment Using Fuzzy Logic of Hip Arthroplasty Patients

  • César Guevara
  • Janio Jadán-Guerrero
  • Yves Rybarczyk
  • Patricia Acosta-Vargas
  • Wilmer Esparza
  • Mario González
  • Santiago Villarreal
  • Sandra Sanchez-Gordon
  • Tania Calle-Jimenez
  • Isabel L. Nunes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 781)

Abstract

The present work proposes a model of detection of movements of patients in rehabilitation of hip surgery in real time. The model applies the Fuzzy Logic technique to identify correct and incorrect movements in the execution of rehabilitation exercises using the motion capture device called XBOXONE Microsoft’s Kinect. An algorithm generates a multivalent logical model that allows the simultaneous modeling of deductive and decision-making processes. This model identifies the correct and incorrect movements of the patient during the execution of rehabilitation exercises. This model uses all the information collected from 24 points of the body with their respective axes of coordinates (X, Y, Z). Using data mining analysis, the algorithm selects the most remarkable attributes, eliminating non-relevant information. The main contributions of this work are: creation of a patient profile based on the movement of the human being in a generic way for the detection and prediction of execution of physical exercises in rehabilitation. On the other hand, an avatar was developed in 3D, which copies and evidences graphically the exercises performed by patients in real time.

Keywords

Hip arthroplasty patients Fuzzy logic Tele-rehabilitation platform Movement assessment Kinect 

Notes

Acknowledgments

The authors thank CEDIA for partially funding this study through the project “CEPRA XI-2017-15 Telerehabilitación”. They also thank Esteban Farías, student of Faculty of Engineering & Design for his collaboration in the design of the avatar.

References

  1. 1.
    Torres, R., Huerta, M., Clotet, R., González, R., Sagbay, G., Erazo, M., Pirrone, J.: Diagnosis of the corporal movement in Parkinson’s disease using Kinect sensors. In: World Congress on Medical Physics and Biomedical Engineering, 7–12 June 2015, Toronto, Canada, pp. 1445–1448. Springer, Cham (2015)Google Scholar
  2. 2.
    Hebesberger, D., Dondrup, C., Koertner, T., Gisinger, C., Pripfl, J.: Lessons learned from the deployment of a long-term autonomous robot as companion in physical therapy for older adults with dementia: a mixed methods study. In: The Eleventh ACM/IEEE International Conference on Human Robot Interaction, pp. 27–34. IEEE Press (2016)Google Scholar
  3. 3.
    Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., Luft, A.: Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. Lancet Neurol. 13(2), 159–166 (2014)CrossRefGoogle Scholar
  4. 4.
    Hesse, S., Waldner, A., Tomelleri, C.: Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7(1), 30 (2010)CrossRefGoogle Scholar
  5. 5.
    Molteni, F., Gasperini, G., Gaffuri, M., Colombo, M., Giovanzana, C., Lorenzon, C., Farina, N., Cannaviello, G., Scarano, S., Proserpio, D., Liberali, D.: Wearable robotic exoskeleton for over-ground gait training in sub-acute and chronic hemiparetic stroke patients: preliminary results. Eur. J. Phys. Rehabil. Med. (2017)Google Scholar
  6. 6.
    Gevrey, M., Dimopoulos, L., Lek, S.: Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Model. 160, 249–264 (2003)CrossRefGoogle Scholar
  7. 7.
    Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6), 1656–1671 (2013)CrossRefGoogle Scholar
  8. 8.
    Rastelli, J.P., Peñas, M.S.: Fuzzy logic steering control of autonomous vehicles inside roundabouts. Appl. Soft Comput. 35, 662–669 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • César Guevara
    • 1
  • Janio Jadán-Guerrero
    • 1
  • Yves Rybarczyk
    • 2
    • 3
  • Patricia Acosta-Vargas
    • 2
  • Wilmer Esparza
    • 2
  • Mario González
    • 2
  • Santiago Villarreal
    • 2
  • Sandra Sanchez-Gordon
    • 4
  • Tania Calle-Jimenez
    • 4
  • Isabel L. Nunes
    • 5
    • 6
  1. 1.Universidad Tecnológica IndoaméricaAmbatoEcuador
  2. 2.Intelligent & Interactive Systems LabUniversidad de Las AméricasQuitoEcuador
  3. 3.CTS/UNINOVA, DEE, Nova University of LisbonMonte de CaparicaPortugal
  4. 4.Escuela Politécnica NacionalQuitoEcuador
  5. 5.Faculty of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
  6. 6.UNIDEMICaparicaPortugal

Personalised recommendations