Advertisement

Interaction with a Tele-Rehabilitation Platform Through a Natural User Interface: A Case Study of Hip Arthroplasty Patients

  • Yves Rybarczyk
  • Santiago Villarreal
  • Mario González
  • Patricia Acosta-Vargas
  • Danilo Esparza
  • Sandra Sanchez-Gordon
  • Tania Calle-Jimenez
  • Janio Jadán
  • Isabel L. Nunes
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 781)

Abstract

Using a tele-rehabilitation platform for motor recovery obliges the user to interact at a remote distance from the computer. In such a situation, a natural user interface can be used both to record the therapeutic movements performed by the patient, and to navigate in the web application. Nevertheless, it is necessary to assess the user experience to validate the system usability. The present paper describes an experiment to test the usability of a platform designed to enhance the recovery of patients after hip replacement surgery. The user experience is evaluated through several metrics (completion time and usability questionnaire) and the results are related to a sociodemographic questionnaire. A clustering approach is implemented to identify a relationship between the user’s profile and the interaction performance with the platform.

Keywords

Usability assessment User experience Kinect Health computing Data analysis Clustering 

Notes

Acknowledgments

The authors would like to thank CEDIA for partially funding this study through the project “CEPRA XI-2017-15 Telerehabilitación”.

References

  1. 1.
    Rybarczyk, Y., Kleine Deters, J., Aladro Gonzalvo, A., Gonzalez, M., Villarreal, S., Esparza, D.: ePHoRt project: a web-based platform for home motor rehabilitation. In: Rocha Á., Correia A., Adeli H., Reis L., Costanzo S. (eds.) WorldCIST 2017. Advances in Intelligent Systems and Computing, vol. 570, pp. 609–618. Springer, Heidelberg (2017)Google Scholar
  2. 2.
    Rybarczyk, Y., Vernay, D.: Educative therapeutic tool to promote the empowerment of disabled people. IEEE Lat. Am. Trans. 14, 3410–3417 (2016)CrossRefGoogle Scholar
  3. 3.
    Rybarczyk, Y., Gonçalves, M.J.: WebLisling: a web-based therapeutic platform for the rehabilitation of aphasic patients. IEEE Lat. Am. Trans. 14, 3921–3927 (2016)CrossRefGoogle Scholar
  4. 4.
    Gameiro, J., Cardoso, T., Rybarczyk, Y.: Kinect-sign: teaching sign language to listeners through a game. In: Rybarczyk, Y., Cardoso, T., Rosas, J., Camarinha-Matos, L.M. (eds.) eNTERFACE 2013. IFIP Advances in Information and Communication Technology, vol. 425, pp. 141–159. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Plantard, P., Shum, H., Le Pierres, A.S., Multon, F.: Validation of an ergonomic assessment method using kinect data in real workplace conditions. Appl. Ergon. 65, 562–569 (2016)CrossRefGoogle Scholar
  6. 6.
    Coelho, T., De Oliveira, R., Cardoso, T., Rosas, J., Rybarczyk, Y.: Body ownership of virtual avatars: an affordance approach of telepresence. In: Rybarczyk Y., Cardoso T., Rosas J., Camarinha-Matos L.M. (eds.) eNTERFACE 2013. IFIP Advances in Information and Communication Technology, vol. 425, pp. 3–19. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  7. 7.
    Brook, G., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39, 1062–1068 (2014)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Wharton, C., Rieman, J., Lewis, C., Polson, P.: The cognitive walkthrough method: a practitioner’s guide. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods, pp. 105–140. Wiley, New York (1994)Google Scholar
  10. 10.
    Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods, pp. 25–62. Wiley, New York (1994)Google Scholar
  11. 11.
    Sheu, F., Lee, Y., Yang, S., Chen, N.: User-centered design of interactive gesture-based fitness video game for elderly. In: Chen, G., Kumar, V., Kinshuk, Huang R., Kong, S. (eds.) Emerging Issues in Smart Learning. Lecture Notes in Educational Technology, pp. 393–397. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Nakai, A., Pyae, A., Luimula, M., Hongo, S., Vuola, H., Smed, J.: Investigating the effects of motion-based kinect game system on user cognition. J. Multimodal User Interfaces 9, 403–411 (2015)CrossRefGoogle Scholar
  13. 13.
    Simor, F., Brum, M., Schmidt, J., Rieder, R., De Marchi, A.: Usability evaluation methods for gesture-based games: a systematic review. JMIR Serious Games 4, e17 (2016)CrossRefGoogle Scholar
  14. 14.
    Brooke, J.: SUS – A quick and dirty usability scale. In: Usability Evaluation in Industry, pp. 189–194. Taylor & Francis, London (1996)Google Scholar
  15. 15.
    Abdi, H., Lynne, J.W.: Principal component analysis. Wiley Interdisc. Rev.: Comput. Stat. 2, 433–459 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Yves Rybarczyk
    • 1
    • 2
  • Santiago Villarreal
    • 1
  • Mario González
    • 1
  • Patricia Acosta-Vargas
    • 1
  • Danilo Esparza
    • 1
  • Sandra Sanchez-Gordon
    • 3
  • Tania Calle-Jimenez
    • 3
  • Janio Jadán
    • 4
  • Isabel L. Nunes
    • 5
    • 6
  1. 1.Intelligent & Interactive Systems LabUniversidad de Las AméricasQuitoEcuador
  2. 2.CTS/UNINOVA, DEE, Nova University of LisbonMonte de CaparicaPortugal
  3. 3.Escuela Politécnica NacionalQuitoEcuador
  4. 4.Universidad Tecnológica IndoaméricaAmbatoEcuador
  5. 5.Faculty of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
  6. 6.UNIDEMICaparicaPortugal

Personalised recommendations