Advertisement

Improving the Robustness to Input Errors on Touch-Based Self-service Kiosks and Transportation Apps

  • Frode Eika Sandnes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10896)

Abstract

Text input is cumbersome on public self-service kiosks and apps. Applications often provide prefix-based text suggestions to speed up input, but the input must be correct. However, application specific lists are usually limited in size. For example, the Norwegian rail network comprise 324 stations. This can be exploited in the input process. Several approaches are explored herein for more flexible text input that are robust to errors.

Keywords

Self-service kiosks Travel apps Text entry Error correction 

References

  1. 1.
    Dickinson, J.E., Ghali, K., Cherrett, T., Speed, C., Davies, N., Norgate, S.: Tourism and the smartphone app: capabilities, emerging practice and scope in the travel domain. Curr. Issues Tour. 17, 84–101 (2014)CrossRefGoogle Scholar
  2. 2.
    Huang, Y.P., Chang, Y.T., Sandnes, F.E.: Ubiquitous information transfer across different platforms by QR codes. J. Mob. Multimed. 6, 3–13 (2010)Google Scholar
  3. 3.
    MacKenzie, I.S., Buxton, W.: Extending Fitts’ law to two-dimensional tasks. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems, pp. 219–226. ACM (1992)Google Scholar
  4. 4.
    Eika, E.: Universally designed text on the web: towards readability criteria based on antipatterns. Stud. Health Technol. Inform. 229, 461–470 (2016)Google Scholar
  5. 5.
    Eika, E., Sandnes, F.E.: Authoring WCAG2.0-compliant texts for the web through text readability visualization. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2016. LNCS, vol. 9737, pp. 49–58. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40250-5_5CrossRefGoogle Scholar
  6. 6.
    Berget, G., Sandnes, F.E.: Do autocomplete functions reduce the impact of dyslexia on information searching behaviour? A case of Google. J. Am. Soc. Inf. Sci. Technol. 67, 2320–2328 (2016)CrossRefGoogle Scholar
  7. 7.
    Whitney, G., Keith, S., Bühler, C., Hewer, S., Lhotska, L., Miesenberger, K., Sandnes, F.E., Stephanidis, C., Velasco, C.A.: Twenty five years of training and education in ICT design for all and assistive technology. Technol. Disabil. 3, 163–170 (2011)Google Scholar
  8. 8.
    Sandnes, F.E.: What do low-vision users really want from smart glasses? Faces, text and perhaps no glasses at all. In: Miesenberger, K., Bühler, C., Penaz, P. (eds.) ICCHP 2016. LNCS, vol. 9758, pp. 187–194. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41264-1_25CrossRefGoogle Scholar
  9. 9.
    Gomez, J.V., Sandnes, F.E.: RoboGuideDog: guiding blind users through physical environments with laser range scanners. Procedia Comput. Sci. 14, 218–225 (2012)CrossRefGoogle Scholar
  10. 10.
    Sandnes, F.E., Tan, T.B., Johansen, A., Sulic, E., Vesterhus, E., Iversen, E.R.: Making touch-based kiosks accessible to blind users through simple gestures. Univers. Access Inf. Soc. 11, 421–431 (2012)CrossRefGoogle Scholar
  11. 11.
    Lin, M.W., Cheng, Y.M., Yu, W., Sandnes, F.E.: Investigation into the feasibility of using tactons to provide navigation cues in pedestrian situations. In: Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat, pp. 299–302. ACM (2008)Google Scholar
  12. 12.
    Liljander, V., Gillberg, F., Gummerus, J., Van Riel, A.: Technology readiness and the evaluation and adoption of self-service technologies. J. Retail. Consum. Serv. 13, 177–191 (2006)CrossRefGoogle Scholar
  13. 13.
    Petrie, H., Darzentas, J.S., Power, C.: Self-service terminals for older and disabled users: attitudes of key stakeholders. In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds.) ICCHP 2014. LNCS, vol. 8547, pp. 340–347. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08596-8_53CrossRefGoogle Scholar
  14. 14.
    Day, P., Rohan, C., Coventry, L., Johnson, G., Riley, C.: Reach modelling for drive-up self-service. In: Contemporary Ergonomics and Human Factors 2010: Proceedings of the International Conference on Contemporary Ergonomics and Human Factors 2010. Contemporary Ergonomics, pp. 47–55, Taylor & Francis, London (2010)Google Scholar
  15. 15.
    Darzentas, J., Darzentas, J.S.: Systems thinking in design: service design and self-services. Form Akademisk-forskningstidsskrift for design og designdidaktikk 7 (2014)Google Scholar
  16. 16.
    Schreder, G., Smuc, M., Siebenhandl, K., Mayr, E.: Age and computer self-efficacy in the use of digital technologies: an investigation of prototypes for public self-service terminals. In: Stephanidis, C., Antona, M. (eds.) UAHCI 2013. LNCS, vol. 8010, pp. 221–230. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39191-0_25CrossRefGoogle Scholar
  17. 17.
    Sandnes, F.E., Jian, H.L., Huang, Y.P., Huang, Y.M.: User interface design for public kiosks: an evaluation of the Taiwan high speed rail ticket vending machine. J. Inf. Sci. Eng. 26, 307–321 (2010)Google Scholar
  18. 18.
    Shiba, Y., Sasakura, M.: Visual interface and interaction design for self-service orders at a restaurant. In: 2016 20th International Conference Information Visualisation, pp. 230–235. IEEE (2016)Google Scholar
  19. 19.
    van Schaik, P., Petrie, H., Japp, J.: The ATM speaks: the design and evaluation of an automatic teller machine with voice output. Adv. Assistive Technol. 3, 223–227 (1997)Google Scholar
  20. 20.
    Lyu, Y., Vincent, C.J., Chen, Y., Shi, Y., Tang, Y., Wang, W., Liu, W., Zhang, S., Fang, K., Ding, J.: Designing and optimizing a healthcare kiosk for the community. Appl. Ergon. 47, 157–169 (2015)CrossRefGoogle Scholar
  21. 21.
    Wright, P., Soroka, A., Belt, S., Pham, D.T., Dimov, S., De Roure, D., Petrie, H.: Using audio to support animated route information in a hospital touch-screen kiosk. Comput. Hum. Behav. 26, 753–759 (2010)CrossRefGoogle Scholar
  22. 22.
    Siebenhandl, K., Schreder, G., Smuc, M., Mayr, E., Nagl, M.: A user-centered design approach to self-service ticket vending machines. IEEE Trans. Prof. Commun. 56, 138–159 (2013)CrossRefGoogle Scholar
  23. 23.
    Azad, A., Ruiz, J., Vogel, D., Hancock, M., Lank, E.: Territoriality and behaviour on and around large vertical publicly-shared displays. In: Proceedings of the Designing Interactive Systems Conference, pp. 468–477. ACM (2012)Google Scholar
  24. 24.
    Min, X.G., Li, G.Z., Wan, T.: Improve on the ticket vending machine for the railway. In: Advanced Materials Research, vol. 422, pp. 35–38, Trans Tech Publications (2012)Google Scholar
  25. 25.
    Tikka, H., Viña, S., Jacucci, G., Korpilahti, T.: Provoking the city—touch installations for urban space. Digit. Creativity 22, 200–214 (2011)CrossRefGoogle Scholar
  26. 26.
    Schreder, G., Siebenhandl, K., Mayr, E., Smuc, M.: The ticket machine challenge: social inclusion by barrier-free ticket vending machines. In: Generational Use of New Media, pp. 129–148 (2012)Google Scholar
  27. 27.
    Hagen, S., Sandnes, F.E.: Toward accessible self-service kiosks through intelligent user interfaces. Pers. Ubiquit. Comput. 14, 715–721 (2010)CrossRefGoogle Scholar
  28. 28.
    Sandnes, F.E.: Effects of common keyboard layouts on physical effort: Implications for kiosks and Internet banking. In: The proceedings of Unitech2010: International Conference on Universal Technologies, pp. 91–100 (2010)Google Scholar
  29. 29.
    Sandnes, F.E., Huang, Y.P.: Chording with spatial mnemonics: automatic error correction for eyes-free text entry. J. Inf. Sci. Eng. 22, 1015–1031 (2006)Google Scholar
  30. 30.
    Sandnes, F.E.: Evaluating mobile text entry strategies with finite state automata. In: Proceedings of the 7th International Conference on Human Computer Interaction With Mobile Devices & Services, pp. 115–121. ACM (2005)Google Scholar
  31. 31.
    Sandnes, F.E., Jian, H.-L.: Pair-wise variability index: evaluating the cognitive difficulty of using mobile text entry systems. In: Brewster, S., Dunlop, M. (eds.) Mobile HCI 2004. LNCS, vol. 3160, pp. 347–350. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28637-0_35CrossRefGoogle Scholar
  32. 32.
    Peterson, J.L.: Computer programs for detecting and correcting spelling errors. Commun. ACM 23, 676–687 (1980)CrossRefGoogle Scholar
  33. 33.
    Li, Y., Duan, H., Zhai, C.: A generalized hidden markov model with discriminative training for query spelling correction. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 611–620. ACM (2012)Google Scholar
  34. 34.
    Duan, H., Hsu, B.J.P.: Online spelling correction for query completion. In: Proceedings of the 20th International Conference on World Wide Web, pp. 117–126. ACM (2011)Google Scholar
  35. 35.
    Bruck, M.: The word recognition and spelling of dyslexic children. Read. Res. Q. 23, 51–69 (1988)CrossRefGoogle Scholar
  36. 36.
    Kane, S.K., Wobbrock, J.O., Harniss, M., Johnson, K.L.: TrueKeys: identifying and correcting typing errors for people with motor impairments. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, pp. 349–352. ACM (2008)Google Scholar
  37. 37.
    Kristensson, P.O., Zhai, S.: Relaxing stylus typing precision by geometric pattern matching. In: Proceedings of the 10th International Conference on Intelligent User Interfaces, pp. 151–158. ACM (2005)Google Scholar
  38. 38.
    Sandnes, F.E.: Reflective text entry: a simple low effort predictive input method based on flexible abbreviations. Procedia Comput. Sci. 67, 105–112 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceOslo Metropolitan UniversityOsloNorway
  2. 2.Faculty of TechnologyKristiania University CollegeOsloNorway

Personalised recommendations