Advertisement

Optical Braille Recognition

  • Thorsten Schwarz
  • Reiner Dolp
  • Rainer Stiefelhagen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10896)

Abstract

Analog production methods for braille material, like braille typewriter or thermoforming processes, are still in use. Thereupon exists the wish to archive and preserve those materials, e.g. by digitalizing it. Research in the field of braille writing system detection and braille transcription has been sparse. Therefore we present a system to digitize printed Braille-documents.

Keywords

Optical braille recognition Twin shadow Ink suppression 

References

  1. 1.
    Srinath, S., et al.: An insight into optical braille character recognition since its conceptualisation. Int. J. Comput. Appl. 33, 1 (2011)Google Scholar
  2. 2.
    Isayed, S., Tahboub, R.: A review of optical braille recognition. In: 2015 2nd World Symposium on IEEE Web Applications and Networking, p. 1 (2015)Google Scholar
  3. 3.
    Shreekanth, T., et al.: A review on software algorithms for optical recognition of embossed braille characters. Int. J. Comput. Appl. 81(3), 25 (2013)Google Scholar
  4. 4.
    Calders, P., Mennens, J.E., Frangois, G.E.: Optical pattern recognition of braille originals. In: 1986 International Symposium/Innsbruck International Society for Optics and Photonics, p. 229 (1986)Google Scholar
  5. 5.
    Mennens, J., et al.: Optical recognition of braille writing using standard equipment. IEEE Trans. Rehabil. Eng. 2(4), 207 (1994)CrossRefGoogle Scholar
  6. 6.
    Hentzschel, T., Blenkhorn, P.: An optical reading system for embossed braille characters using a twin shadows approach. J. Microcomput. Appl. 18(4), 341 (1995)CrossRefGoogle Scholar
  7. 7.
    Kitchings, R.T., Antonacopoulos, A., Drakopoulos, D.: Analysis of scand braille documents. In: Document Analysis Systems, Bd. 14, p. 413. World Scientific (1995)Google Scholar
  8. 8.
    Antonacopoulos, A., Bridson, D.: A robust braille recognition system. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 533–545. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28640-0_50CrossRefGoogle Scholar
  9. 9.
    Wong, L., Abdulla, W., Hussmann, S.: A software algorithm prototype for optical recognition of embossed braille. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Bd. 2, p. 586. IEEE (2004)Google Scholar
  10. 10.
    Namba, M., Zhang, Z.: Cellular neural network for associative memory and its application to braille image recognition. In: The 2006 IEEE International Joint Conference on Neural Network Proceedings IEEE, p. 2409 (2006)Google Scholar
  11. 11.
    Babadi, M.Y., Nasihatkon, B., Azimifar, Z., Fieguth, P.: Probabilistic estimation of braille document parameters. In: 16th IEEE International Conference on Image Processing (ICIP), p. 2001. IEEE (2009)Google Scholar
  12. 12.
    Zhang, S., Yoshino, K.: A braille recognition system by the mobile phone with embedded camera. In: Second International Conference on IEEE Innovative Computing, Information and Control, ICICIC 2007, p. 223 (2007)Google Scholar
  13. 13.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thorsten Schwarz
    • 1
  • Reiner Dolp
    • 1
  • Rainer Stiefelhagen
    • 1
  1. 1.Studycentre for the Visually ImpairedKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations