Advertisement

Using Semi-supervised Group Sparse Regression to Improve Web Accessibility Evaluation

  • Yue Wu
  • Zhi Yu
  • Liangcheng Li
  • Wei Wang
  • Jiajun Bu
  • Yueqing Zhang
  • Lianjun Dai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10896)

Abstract

Web accessibility evaluation checks the accessibility of the website to help improve the user experiences for disabled people. Due to the massive number of web pages in a website, manually reviewing all the pages becomes totally impractical. But the complexities of evaluating some checkpoints require certain human involvements. To address this issue, we develop the semi-supervised group sparse regression algorithm which takes advantages of the high precision of a small amount of manual evaluation results along with the global distribution of all the web pages and efficiently gives out the overall evaluation result of the website. Moreover, the proposed method can tell the importance of each feature in evaluating each checkpoint. The experiments on various websites demonstrate the superiority of our proposed algorithm.

Keywords

Accessibility evaluation Semi-supervised Group Sparse Regression 

References

  1. 1.
    Nietzio, A., Eibegger, M., Goodwin, M., Snaprud, M.: Following the WCAG 2.0 techniques: experiences from designing a WCAG 2.0 checking tool. In: Miesenberger, K., Karshmer, A., Penaz, P., Zagler, W. (eds.) ICCHP 2012. LNCS, vol. 7382, pp. 417–424. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31522-0_63CrossRefGoogle Scholar
  2. 2.
    Klein, E., Bolfing, A., Riesch, M.: Checking web accessibility with the content accessibility checker (CAC). In: Miesenberger, K., Fels, D., Archambault, D., Peňáz, P., Zagler, W. (eds.) ICCHP 2014. LNCS, vol. 8547, pp. 109–112. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08596-8_16CrossRefGoogle Scholar
  3. 3.
    Lazar, J., Beere, P., Greenidge, K.D., Nagappa, Y.: Web accessibility in the Mid-Atlantic United States: a study of 50 homepages. Univers. Access Inf. Soc. 2(4), 331–341 (2003)CrossRefGoogle Scholar
  4. 4.
    Lazar, J., Greenidge, K.D.: One year older, but not necessarily wiser: an evaluation of homepage accessibility problems over time. Univers. Access Inf. Soc. 4(4), 285–291 (2006)CrossRefGoogle Scholar
  5. 5.
    Hackett, S., Parmanto, B.: Homepage not enough when evaluating web site accessibility. Internet Res. 19(1), 78–87 (2009)CrossRefGoogle Scholar
  6. 6.
    Harper, S., Moon, A.A., Vigo, M., Brajnik, G., Yesilada, Y.: DOM block clustering for enhanced sampling and evaluation. In: Proceedings of the 12th Web for All Conference, p. 15. ACM (2015)Google Scholar
  7. 7.
    Mucha, J., Snaprud, M., Nietzio, A.: Web page clustering for more efficient website accessibility evaluations. In: Miesenberger, K., Bühler, C., Penaz, P. (eds.) ICCHP 2016. LNCS, vol. 9758, pp. 259–266. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-41264-1_35CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Wang, C., Bu, J., Yu, Z., Zhou, Y., Chen, C.: A sampling method based on URL clustering for fast web accessibility evaluation. Front. Inf. Technol. Electron. Eng. 16(6), 449–456 (2015)CrossRefGoogle Scholar
  9. 9.
    Zhang, M., Wang, C., Yu, Z., Shen, C., Bu, J.: Active learning for web accessibility evaluation. In: Proceedings of the 14th Web for All Conference on the Future of Accessible Work, p. 16. ACM (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yue Wu
    • 1
  • Zhi Yu
    • 1
  • Liangcheng Li
    • 1
  • Wei Wang
    • 1
  • Jiajun Bu
    • 1
  • Yueqing Zhang
    • 2
  • Lianjun Dai
    • 3
  1. 1.Alibaba-Zhejiang University Joint Institute of Frontier Technologies, Zhejiang Provincial Key Laboratory of Service Robot, College of Computer ScienceZhejiang UniversityHangzhouChina
  2. 2.University of LiverpoolLiverpoolEngland, UK
  3. 3.China Disabled Persons’ Federation Information CenterBeijingChina

Personalised recommendations