Advertisement

Visual Shoreline Detection for Blind and Partially Sighted People

  • Daniel Koester
  • Tobias Allgeyer
  • Rainer Stiefelhagen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10897)

Abstract

Currently existing navigation and guidance systems do not properly address special guidance aides, such as the widely used white cane. Therefore, we propose a novel shoreline location system that detects and tracks possible shorelines from a user’s perspective in an urban scenario. Our approach uses three dimensional scene information acquired from a stereo camera and can potentially inform a user of available shorelines as well as obstacles that are blocking an otherwise clear shoreline path, and thus help in shorelining. We evaluate two different algorithmic approaches on two different datasets, showing promising results. We aim to improve a user’s scene understanding by providing relevant scene information and to help in the creation of a mental map of nearby guidance tasks. This can be especially helpful in reaching the next available shoreline in yet unknown locations, e.g., at an intersection or a drive-way. Also, knowledge of available shorelines can be integrated into routing and guidance systems and vice versa.

Keywords

Assistive system Orientation & mobility Shorelines 

Notes

Acknowledgements

This work has been partially funded by the Bundesministerium für Bildung und Forschung (BMBF) under grant no. 16SV7609.

References

  1. 1.
    Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJ. 69(4), 211–221 (2007).  https://doi.org/10.1007/s10708-007-9111-yCrossRefGoogle Scholar
  2. 2.
    Zielstra, D., Zipf, A.: Quantitative studies on the data quality of OpenStreetMap in Germany. In: Proceedings of GIScience (2010). https://www.researchgate.net/publication/267989860_Quantitative_Studies_on_the_Data_Quality_of_OpenStreetMap_in_Germany
  3. 3.
    Koester, D., Awiszus, M., Stiefelhagen, R.: Mind the gap: virtual shorelines for blind and partially sighted people. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1443–1451 (2017).  https://doi.org/10.1109/ICCVW.2017.171
  4. 4.
    Csapó, Á., Wersényi, G., Nagy, H., Stockman, T.: A survey of assistive technologies and applications for blind users on mobile platforms: a review and foundation for research. J. Multimodal User Interfaces 9(4), 275–286 (2015).  https://doi.org/10.1007/s12193-015-0182-7CrossRefGoogle Scholar
  5. 5.
    Se, S.: Zebra-crossing detection for the partially sighted. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 211–217 (2000).  https://doi.org/10.1109/CVPR.2000.854787
  6. 6.
    Ahmetovic, D., Bernareggi, C., Mascetti, S.: Zebralocalizer: identification and localization of pedestrian crossings. In: Proceedings of the International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 275–286 (2011).  https://doi.org/10.1145/2037373.2037415
  7. 7.
    Ahmetovic, D., Bernareggi, C., Gerino, A., Mascetti, S.: ZebraRecognizer: efficient and precise localization of pedestrian crossings. In: 22nd International Conference on Pattern Recognition (ICPR), pp. 2566–2571 (2014).  https://doi.org/10.1109/ICPR.2014.443
  8. 8.
    Ahmetovic, D., Manduchi, R., Coughlan, J., Mascetti, S.: Mind your crossings: mining GIS imagery for crosswalk localization. ACM Trans. Access. Comput. 9(4), 11:1–11:25 (2017).  https://doi.org/10.1145/3046790CrossRefGoogle Scholar
  9. 9.
    Ivanchenko, V., Coughlan, J., Shen, H.: Detecting and locating crosswalks using a camera phone. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2008).  https://doi.org/10.1109/CVPRW.2008.4563143
  10. 10.
    Ivanchenko, V., Coughlan, J., Shen, H.: Crosswatch: a camera phone system for orienting visually impaired pedestrians at traffic intersections. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1122–1128. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70540-6_168CrossRefGoogle Scholar
  11. 11.
    Ivanchenko, V., Coughlan, J., Shen, H.: Real-time walk light detection with a mobile phone. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) ICCHP 2010. LNCS, vol. 6180, pp. 229–234. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14100-3_34CrossRefGoogle Scholar
  12. 12.
    Elmannai, W., Elleithy, K.: Sensor-based assistive devices for visually-impaired people: current status, challenges, and future directions. Sensors 17(3), 565 (2017).  https://doi.org/10.3390/s17030565CrossRefGoogle Scholar
  13. 13.
    Coughlan, J., Manduchi, R., Shen, H.: Computer vision-based terrain sensors for blind wheelchair users. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2006. LNCS, vol. 4061, pp. 1294–1297. Springer, Heidelberg (2006).  https://doi.org/10.1007/11788713_186CrossRefGoogle Scholar
  14. 14.
    Coughlan, J., Shen, H.: Terrain analysis for blind wheelchair users: computer vision algorithms for finding curbs and other negative obstacles. In: CVHI (2007). https://www.ski.org/terrain-analysis-blind-wheelchair-users-computer-vision-algorithms-finding-curbs-and-other-negative
  15. 15.
    Ivanchenko, V., Coughlan, J., Gerrey, W., Shen, H.: Computer vision-based clear path guidance for blind wheelchair users. In: Proceedings of the 10th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 291–292 (2008).  https://doi.org/10.1145/1414471.1414543
  16. 16.
    Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Intelligent Vehicles Symposium (IV), pp. 963–968 (2011).  https://doi.org/10.1109/IVS.2011.5940405
  17. 17.
    Wu, Z., Fu, W., Xue, R., Wang, W.: A novel line space voting method for vanishing-point detection of general road images. Sensors 16(7), 948 (2016).  https://doi.org/10.3390/s16070948CrossRefGoogle Scholar
  18. 18.
    Akinlar, C., Topal, C.: EDLines: real-time segment detection by edge drawing. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 2837–2840 (2011).  https://doi.org/10.1109/ICIP.2011.6116138
  19. 19.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981).  https://doi.org/10.1145/358669.358692MathSciNetCrossRefGoogle Scholar
  20. 20.
    Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013).  https://doi.org/10.1109/TPAMI.2012.257CrossRefGoogle Scholar
  21. 21.
    Chum, O., Matas, J.: Optimal randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1472–1482 (2008).  https://doi.org/10.1109/TPAMI.2007.70787CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Daniel Koester
    • 1
  • Tobias Allgeyer
    • 1
  • Rainer Stiefelhagen
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations