Advertisement

Massive MIMO Power Allocation in Millimeter Wave Networks

  • Hang LiuEmail author
  • Chinh Tran
  • Jan Lasota
  • Son Dinh
  • Xianfu Chen
  • Feng Ouyang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10874)

Abstract

Massive multiple-input multiple-output (MMIMO) is a key technology for 5G mobile communication systems, which enables to simultaneously form and transmit multiple directional signal beams to multiple mobile terminals (MTs) on the same frequency channel with high array beamforming gains and throughput. One of the challenges in MMMIO beamforming is how to allocate the transmit power to multiple beams sent from a MMIMO base station to multiple MTs and schedule data transmissions, given heterogeneous traffic and channel conditions of multiple MTs. Furthermore, the statistics of users’ packet arrivals and channel states may not be known a priori and vary over time. In this paper, we propose a framework to optimize MMIMO beam power allocation and transmission scheduling in millimeter wave networks with time-varying traffic and channel conditions. The optimization problem is formulated as a Markov decision process (MDP) with the objective to minimize the overall queueing delay of multiple MTs by taking their heterogeneous and dynamic traffic and channel states into account. An online reinforcement learning scheme is designed which allows achieving the long-term optimal system performance with no requirement for a priori knowledge of user traffic statistics and wireless network states. Evaluation results show that our proposed scheme outperforms the state-of-the-art baselines.

Keywords

Massive MIMO Millimeter wave communications Power allocation Machine learning Markov decision process Dynamic networks 

References

  1. 1.
  2. 2.
    Assessment of the Global Mobile Broadband Deployments and Forecasts for International Mobile Telecommunications, ITU-R. Technical report M.2243 (2015)Google Scholar
  3. 3.
    Rappaport, T., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Samimi, M., Gutierrez, F.: Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access. 1, 335–349 (2013)CrossRefGoogle Scholar
  4. 4.
    Bleicher, A.: Millimeter waves may be the future of 5G phones. IEEE Spectr. 50(6), 11–12 (2013)CrossRefGoogle Scholar
  5. 5.
    Boccardi, F., Heath, R., Lozano, A., Marzetta, T., Popovski, P.: Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014)CrossRefGoogle Scholar
  6. 6.
    Bai, T., Desai, V., Heath Jr., R.W.: Millimeter wave cellular channel models for system evaluation. In: International Conference on Computing, Networking and Communication (2014)Google Scholar
  7. 7.
    Rappaport, T., Gutierrez, F., Ben-Dor, E., Murdock, J., Qiao, Y., Tamir, J.: Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antennas Propag. 61(4), 1850–1859 (2013)CrossRefGoogle Scholar
  8. 8.
    Larsson, E.G., Edfors, O., Tufvesson, F., Marzetta, T.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014)CrossRefGoogle Scholar
  9. 9.
    Roh, W., Seol, J.-Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J., Cheun, K., Aryanfar, F.: Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun. Mag. 52(2), 106–113 (2014)CrossRefGoogle Scholar
  10. 10.
    Rusek, F., Persson, D., Lau, B.K., Larsson, E., Marzetta, T., Edfors, O., Tufvesson, F.: Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process. Mag. 30(1), 40–60 (2013)CrossRefGoogle Scholar
  11. 11.
    Hoydis, J., ten Brink, S., Debbah, M.: Massive MIMO in the UL/DL of cellular networks: how many antennas do we need: IEEE. J. Sel. Areas Commun. 31(2), 160–171 (2013)CrossRefGoogle Scholar
  12. 12.
    Kim, T., et al.: Tens of Gbps support with mmWave beamforming systems for next generation communications. In: IEEE Globecom (2013)Google Scholar
  13. 13.
    Yin, B., et al.: High-throughput beamforming receiver for millimeter wave mobile communication. In: IEEE Globecom (2013)Google Scholar
  14. 14.
    Biglieri, E., et al.: MIMO Wireless Communications. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  15. 15.
    Ngo, H., Larsson, E., Marzetta, T.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61, 1436–1449 (2013)CrossRefGoogle Scholar
  16. 16.
    Marzetta, T.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)CrossRefGoogle Scholar
  17. 17.
    Lu, L., Li, G., Swindlehurst, A., Ashikhmin, A., Zhang, R.: An overview of massive MIMO: benefits and challenges. IEEE J. Sel. Top. Signal Process. 8(5), 742–758 (2014)CrossRefGoogle Scholar
  18. 18.
    Ding, Z., Dai, L., Schober, R., Poor, V.: NOMA meets finite resolution analog beamforming in massive MIMO and millimeter-wave networks. IEEE Wirel. Commun. Lett. 21(8), 1879–1882 (2017)CrossRefGoogle Scholar
  19. 19.
    Bjornson, E., Sanguinetti, L., Hoydis, J., Debbah, M.: Designing multi-user MIMO for energy efficiency: when is massive MIMO the answer. In: IEEE Wireless Communication and Networking Conference (2014)Google Scholar
  20. 20.
    Yang, H., Marzetta, T.: Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE J. Sel. Areas Commun. 31(2), 172–179 (2013)CrossRefGoogle Scholar
  21. 21.
    Yang, W., Durisi, G., Koch, T., Polyanskiy, Y.: Block-fading channels at finite block-length. In: Proceedings 10th International Symposium on Wireless Communication Systems, Ilmenau, Germany (2013)Google Scholar
  22. 22.
    Lau, V., Liu, Y., Chen, T.: On the design of MIMO block-fading channels with feedback-link capacity constraint. IEEE Trans. Commun. 52(1), 62–70 (2004)CrossRefGoogle Scholar
  23. 23.
    Bertsekas, D.P., Gallager, R.G.: Data Networks. Prentice Hall, Upper Saddle River (1987)zbMATHGoogle Scholar
  24. 24.
    Puterman, M.L.: Markov Decision Processes. Wiley, Hoboken (1994)CrossRefGoogle Scholar
  25. 25.
    Burnetas, A., Katehakis, M.: Optimal adaptive policies for markov decision processes. Math. Oper. Res. 22(1), 222–255 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Chen, X., Liu, P., Liu, H., Wu, C., Ji, Y.: Multipath transmission scheduling in millimeter wave cloud radio access networks. In: Proceedings of IEEE ICC 2018, Kansas City, MO (2018)Google Scholar
  27. 27.
    Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large scale dynamic programming. Mach. Learn. 22(1), 59–94 (1996)zbMATHGoogle Scholar
  28. 28.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  29. 29.
    Mezzavilla, M., Goyal, S., Panwar, S., Rangan, S., Zorzi, M.: An MDP model for optimal handover decisions in mmWave cellular networks. In: EuCNC, Athens, Greece (2016)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hang Liu
    • 1
    Email author
  • Chinh Tran
    • 1
  • Jan Lasota
    • 1
  • Son Dinh
    • 1
  • Xianfu Chen
    • 2
  • Feng Ouyang
    • 3
  1. 1.The Catholic University of AmericaWashington, DCUSA
  2. 2.VTT Technical Research Centre of FinlandOuluFinland
  3. 3.Johns Hopkins Applied Physics LaboratoryLaurelUSA

Personalised recommendations