Advertisement

Paleopedology as a Tool for Reconstructing Paleoenvironments and Paleoecology

  • Emily J. Beverly
  • William E. Lukens
  • Gary E. Stinchcomb
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Soils form as a product of physical, chemical, and biological activity at the outermost veneer of Earth’s surface. Once buried and incorporated into the sedimentary record, these soils, now paleosols, preserve archives of ancient climates, ecosystems, and sedimentary systems. Paleopedology, the study of paleosols, includes qualitative interpretation of physical characteristics and quantitative analysis of geochemical and mineralogical assays. In this chapter, the paleosol macroscopic, micromorphological, mineralogical, and geochemical indicators of paleoecology are discussed with emphasis on basic analytical and interpretative techniques. These data can reveal a breadth of site-specific interpretations of vegetation, sedimentary processes, climatic variables, and durations of landscape stability. The well-known soil-forming factors are presented as a theoretical framework for understanding landscape-scale soil evolution through time. Vertical and lateral patterns of stacked paleosols that appear in the rock record are discussed in order to address practical approaches to identifying and describing paleosols in the field. This chapter emphasizes a robust multi-proxy approach to paleopedology that combines soil stratigraphy, morphology, mineralogy, biology, and chemistry to provide an in-depth understanding of paleoecology.

Keywords

Paleo-Critical Zone Soil Paleosol Paleocatena Paleoenvironments Human evolution 

References

  1. Amundson, R., Richter, D. D., Humphreys, G. S., Jobbagy, E. G., & Gaillardet, J. (2007). Coupling between biota and Earth materials in the critical zone. Elements, 3, 327–332.Google Scholar
  2. An, Z. S., & Porter, S. C. (1997). Millennial-scale climatic oscillations during the last interglaciation in central China. Geology, 25, 603–606.Google Scholar
  3. Anderson, S. P., Dietrich, W. E., & Brimhall, G. H. (2002). Weathering profiles, mass-balance analysis, and rates of solute loss: linkages between weathering and erosion in a small, steep catchment. Geological Society of America Bulletin, 114, 1143–1158.Google Scholar
  4. Ashley, G. M. (2007). Orbital rhythms, monsoons, and playa lake response, Olduvai Basin, equatorial East Africa (ca. 1.85–1.74 Ma). Geology, 35, 1091–1094.Google Scholar
  5. Ashley, G. M., & Driese, S. G. (2000). Paleopedology and paleohydrology of a volcaniclastic paleosol interval: implications for Early Pleistocene stratigraphy and paleoclimate record: Olduvai Gorge, Tanzania. Journal of Sedimentary Research, 70, 1065–1080.Google Scholar
  6. Ashley, G. M., Barboni, D., Domínguez-Rodrigo, M., Bunn, H. T., Mabulla, A. Z. P., Diez-Martin, F., et al. (2010). Paleoenvironmental and paleoecological reconstruction of a freshwater oasis in savannah grassland at FLK North, Olduvai Gorge, Tanzania. Quaternary Research, 74, 333–343.Google Scholar
  7. Ashley, G. M., Deocampo, D. M., Kahmann-Robinson, J. A., & Driese, S. G. (2013). Groundwater-fed wetland sediments and paleosols: it’s all about water table. In S. G. Driese & L. C. Nordt (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology (SEPM Special Publication No. 104) (pp. 47–62). Tulsa: SEPM.Google Scholar
  8. Ashley, G. M., Beverly, E. J., Sikes, N. E., & Driese, S. G. (2014). Paleosol diversity in the Olduvai Basin, Tanzania: effects of geomorphology, parent material, depositional environment, and groundwater on soil development. Quaternary International, 322, 66–77.Google Scholar
  9. Aslan, A., & Autin, W. J. (1998). Holocene flood-plain soil formation in the southern lower Mississippi Valley: implications for interpreting alluvial paleosols. Geological Society of America Bulletin, 110, 433–449.Google Scholar
  10. Atchley, S. C., Nordt, L. C., Dworkin, S. I., Ramezani, J., Parker, W. G., Ash, S. R., et al. (2013). A linkage among Pangean tectonism, cyclic alluviation, climate change, and biologic turnover in the Late Triassic: the record from the Chinle Formation, Southwestern United States. Journal of Sedimentary Research, 83, 1147–1161.Google Scholar
  11. Atchley, S., Nordt, L., & Dworkin, S. I. (2004). Eustatic controls on alluvial sequence stratigraphy: a possible example from the Cretaceous-Tertiary transition of the Tornillo Basin, Big Bend National Park, West Texas, U.S.A. Journal of Sedimentary Research, 74, 391–404.Google Scholar
  12. Aziz, H. A., Hilgen, F. J., van Luijk, G. M., Sluijs, A., Kraus, M. J., Pares, J. M., et al. (2008). Astronomical climate control on paleosol stacking patterns in the upper Paleocene-lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology, 36, 531–534.Google Scholar
  13. Bae, C. J. (2013). Archaic Homo sapiens. Nature Education Knowledge, 4, 4.Google Scholar
  14. Barboni, D., Ashley, G. M., Domínguez-Rodrigo, M., Bunn, H. T., Mabulla, A., & Baquedano, E. (2010). Phytoliths infer dense and heterogeneous paleovegetation at FLK North and surrounding localities during upper Bed I time, Olduvai Gorge, Tanzania. Quaternary Research, 74, 344–354.Google Scholar
  15. Barnaby, R. J., & Rimstidt, J. D. (1989). Redox conditions of calcite cementation interpreted from Mn and Fe contents of authigenic calcites. Geological Society of America Bulletin, 101, 795–804.Google Scholar
  16. Berke, M. A. (2017). Reconstructing Terrestrial Paleoenvironments Using Sedimentary Organic Biomarkers. In D. A. Croft, S. W. Simpson, & D. F. Su (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.Google Scholar
  17. Berke, M. A. (2018). Reconstructing terrestrial paleoenvironments using sedimentary organic biomarkers. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.Google Scholar
  18. Beverly, E. J., Ashley, G. M., & Driese, S. G. (2014). Reconstruction of a Pleistocene paleocatena using micromorphology and geochemistry of lake margin paleo-Vertisols, Olduvai Gorge, Tanzania. Quaternary International, 322–323, 78–94.CrossRefGoogle Scholar
  19. Beverly, E. J., Driese, S. G., Peppe, D. J., Arellano, L. N., Blegen, N., Faith, J. T., et al. (2015a). Reconstruction of a semi-arid Late Pleistocene paleocatena from the Lake Victoria region, Kenya. Quaternary Research, 84, 368–381.Google Scholar
  20. Beverly, E. J., Driese, S. G., Peppe, D. J., Johnson, C. R., Michel, L. A., Faith, J. T., et al. (2015b). Recurrent spring-fed rivers in a Middle to Late Pleistocene semi-arid grassland: implications for environments of early humans in the Lake Victoria Basin, Kenya. Sedimentology, 62, 1611–1635.Google Scholar
  21. Bestland, E. A., & Retallack, G. J. (1993). Volcanically influenced calcareous paleosols from the Kiahera Formation, Rusinga Island, Kenya. Journal of the Geological Society of London, 148, 1067–1078.Google Scholar
  22. Bestland, E. A., Retallack, G. J., & Swisher III, C. C. (1997). Stepwise climate change recorded in Eocene-Oligocene paleosol sequences from central Oregon, The Journal of Geology, 105, 153–172.Google Scholar
  23. Birkeland, P. W. (1999). Soils and geomorphology. Oxford: Oxford University Press.Google Scholar
  24. Blake, G. R., & Hartge, K. H. (1986). Bulk Density. In A. Klute (Ed.), Methods of soil analysis: Part I. physical and mineralogical methods (pp. 363–375). Madison: Soil Science Society of America Inc.Google Scholar
  25. Blokhuis, W. A., Kooistra, M. J., & Wilding, L. P. (1990). Micromorphology of cracking clayey soils (Vertisols). In L. A. Douglas (Ed.), Soil micromorphology: a basic and applied science, Developments in Soil Science, 19, 123–148.Google Scholar
  26. Bown, T. M., & Kraus, M. J. (1987). Integration of channel and floodplain suites in aggrading fluvial systems, I. Developmental sequence and lateral relations of lower Eocene alluvial paleosols, Willwood Formation, Bighorn Basin, Wyoming. Journal of Sedimentary Petrology, 57, 587–601.Google Scholar
  27. Brady, N. C., & Weil, R. R. (2008). The nature and properties of soil (14th ed).Google Scholar
  28. Brantley, S. L., Goldhaber, M. B., & Ragnarsdottir, K. V. (2007). Crossing disciplines and scales to understand the Critical Zone. Elements, 3, 307–314.Google Scholar
  29. Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochimica et Cosmochimica Acta, 51, 567–587.Google Scholar
  30. Brimhall, G. H., Chadwick, O. A., Lewis, C. J., Compston, W., Williams, I. S., Danti, K. J., et al. (1991a). Deformational mass in invasive processes transport and soil evolution. Science, 255, 695–702.Google Scholar
  31. Brimhall, G. H., Lewis, C. J., Ford, C., Bratt, J., Taylor, G., & Warin, O. (1991b). Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion, and eolian influx in laterization. Geoderma, 51, 51–91.Google Scholar
  32. Bradley, R. S. (1999). Paleoclimatology: Reconstructing climates of the quaternary. San Diego: Academic Press.Google Scholar
  33. Brewer, R. (1976). Fabric and mineral analysis of soils. New York: Robert E. Krieger Publishing Company.Google Scholar
  34. Bronger, A., & Heinkele, T. (1989). Micromorphology and genesis of paleosols in the Luochuan loess section, China: pedostratigraphic and environmental implications. Geoderma, 45, 123–143.Google Scholar
  35. Bullock, P., FeDoroff, N., Jungerius, A., Stoops, G., Tursina, T., & Babel, U. (1985). Handbook for soil thin section description. Wolverhampton: Waine Research Publications.Google Scholar
  36. Campisano, C. J., & Feibel, C. S. (2008). Depositional environments and stratigraphic summary of the Pliocene Hadar Formation at Hadar, Afar Depression, Ethiopia. In J. Quade & J. G. Wynn (Eds.), The geology of early humans in the Horn of Africa. Geological Society of America Special Paper, 446, 179–201.Google Scholar
  37. Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229–240.Google Scholar
  38. Cerling, T. E. (2014). Stable isotope evidence for hominin environments in Africa. In T. E. Cerling (Ed.), Treatise on geochemistry, Vol. 14: Archaeology and anthropology (pp. 157–67). Oxford: Pergamon.Google Scholar
  39. Cerling, T., & Quade, J. (1993). Stable carbon and oxygen isotopes in soil carbonates. Geophysical Monograph Series 78.Google Scholar
  40. Cerling, T. E., & Hay, R. L. (1986). An isotopic study of paleosol carbonates from Olduvai Gorge. Quaternary Research, 25, 63–78.Google Scholar
  41. Cerling, T. E., Bowman, J. R., & O’Neil, J. R. (1988). An isotopic study of a fluvial-lacustrine sequence: the Plio-Pleistocene Koobi fora sequence, East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 63, 335–356.Google Scholar
  42. Cerling, T. E., Harris, J. M., & Passey, B. H. (2003). Diets of East African bovidae based on stable isotope analysis. Journal of Mammalogy, 84, 456–470.Google Scholar
  43. Cerling, T. E., Levin, N. E., Quade, J., Wynn, J. G., Fox, D. L., Kingston, J. D., et al. (2010). Comment on the paleoenvironment of Ardipithecus ramidus. Science, 328, 1105.Google Scholar
  44. Cerling, T. E., Wynn, J. G., Andanje, Sa, Bird, M. I., Korir, D. K., Levin, N. E., et al. (2011). Woody cover and hominin environments in the past 6 million years. Nature, 476, 51–56.CrossRefGoogle Scholar
  45. Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma, 100, 231–353.Google Scholar
  46. Chadwick, O. A., Brimhall, G. H., & Hendricks, D. M. (1991). From a black to a gray box—a mass balance interpretation of pedogenesis. Geomorphology, 3, 369–390.Google Scholar
  47. Chen, S. T., Smith, S. Y., Sheldon, N. D., & Strömberg, C. (2015). Regional-scale variability in the spread of grasslands in the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 42–52.Google Scholar
  48. Cleveland, D. M., Atchley, S. C., & Nordt, L. C. (2007). Continental sequence stratigraphy of the Upper Triassic (Norian Rhaetian) Chinle strata, northern New Mexico, U.S.A.: allocyclic and autocyclic origins of paleosol-bearing alluvial successions. Journal of Sedimentary Research, 77, 909–924.Google Scholar
  49. Cleveland, D. M., Nordt, L. C., Dworkin, S. I., & Atchley, S. C. (2008). Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic-Jurassic boundary: implications for the biotic crisis? Geological Society of America Bulletin, 120, 1408–1415.Google Scholar
  50. Clyde, W. C., Gingerich, P. D., Wing, S. L., Rohl, U., Westerhold, T., Bowen, G., et al. (2013). Bighorn Basin Coring Project (BBCP): a continental perspective on early Paleogene hyperthermals. Scientific Drilling, 21–31.Google Scholar
  51. Cotton, J. M., & Sheldon, N. D. (2012). High-resolution isotopic record of C4 photosynthesis in a Miocene grassland. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 88–98.Google Scholar
  52. Cremeens, D. L., Hart, J. P., & Darmody, R. G. (1998). Complex pedostratigraphy of a terrace fragipan at the Memorial Park site, central Pennsylvania. Geoarchaeology, 13, 339–359.Google Scholar
  53. Driese, S., & Foreman, J. L. (1992). Paleopedology and paleoclimatic implications of Late Ordovician vertic paleosols, Juniata Formation, southern Appalachians. Journal of Sedimentology Research, 62, 71–83.Google Scholar
  54. Driese, S. G., & Mora, C. I. (1993). Physio-chemical environment of pedogenic carbonate formation in Devonian vertic paleosols, central Appalachians, USA. Sedimentology, 40, 199–216.Google Scholar
  55. Driese, S. G., Mora, C. I., Cotter, E., & Foreman, J. L. (1992). Paleopedology and stable isotope chemistry of Late Silurian vertic Paleosols, Bloomsburg formation, central Pennsylvania. Journal of Sedimentary Research, 62(5), 825–841.Google Scholar
  56. Driese, S. G., Mora, C. I., Stiles, C. A., Joeckel, R. M., & Nordt, L. C. (2000). Mass-balance reconstruction of a modern Vertisol: implications for interpreting the geochemistry and burial alteration of paleo-Vertisols. Geoderma, 95, 179–204.Google Scholar
  57. Driese, S. G., Li, Z.-H., & Horn, S. P. (2005). Late Pleistocene and Holocene climate and geomorphic histories as interpreted from a 23,000 14C yr B.P. paleosol and floodplain soils, southeastern West Virginia, USA. Quaternary Research, 63, 136–149.Google Scholar
  58. Driese, S. G., Peppe, D. J., Beverly, E. J., DiPietro, L. M., Arellano, L. N., & Lehmann, T. (2016). Paleosols and paleoenvironments of the early Miocene deposits near Karungu, Lake Victoria, Kenya. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 167–182.Google Scholar
  59. Driese, S. G., & Ober, E. G. (2005). Paleopedologic and paleohydrologic records of precipitation seasonality from early Pennsylvanian “underclay” Paleosols, USA. Journal of Sedimentary Research, 75, 997–1010.Google Scholar
  60. Driese, S. G., Medaris Jr, L. G., Ren, M., Runkel, A. C., & Langford, R. P. (2007). Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. The Journal of Geology, 115(4), 387–406.Google Scholar
  61. Driese, S. G., Jirsa, M. A., Ren, M., Brantley, S. L., Sheldon, N. D., Parker, D., et al. (2011). Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Research, 189, 1–17.Google Scholar
  62. Driese, S. G., & Ashley, G. M. (2016). Paleoenvironmental reconstruction of a paleosol catena, the Zinj archeological level, Olduvai Gorge, Tanzania. Quaternary Research, 85, 133–146.Google Scholar
  63. Dworkin, S. I., Nordt, L., & Atchley, S. (2005). Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237, 56–68.Google Scholar
  64. Eidt, R. C. (1985). Theoretical and practical considerations in the analysis of anthrosols. In G. Rapp & J. A. Gifford (Eds.), Archaeological geology (pp. 155–190). New Haven: Yale University Press.Google Scholar
  65. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.Google Scholar
  66. Fedoroff, N., & Goldberg, P. (1982). Comparative micromorphology of two late Pleistocene paleosols (in the Paris Basin). Catena, 9, 227–251.Google Scholar
  67. Fitzpatrick, E. A. (1984). Micromorphology of soils. London and New York: Chapman and Hall.Google Scholar
  68. Fitzpatrick, E. A. (1993). Soil microscopy and micromorphology. New York: Wiley.Google Scholar
  69. Ferring, C. R. (1992). Alluvial pedology and geoarchaeological research. In V. T. Holliday (Ed.), Soils in archaeology (pp. 1–40). Washington D. C., Smithsonian Institution Press.Google Scholar
  70. Follmer, L. R. (1998). Preface. In L. R. Follmer, D. L. Johnson, & J. A. Catt (Eds), Revisitation of concepts in paleopedology: Transactions of the Second International Symposium on Paleopedology. Quaternary International (vol. 51/52, pp. 1–3).Google Scholar
  71. Gallagher, T. M., & Sheldon, N. D. (2013). A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology, 41, 647–650.Google Scholar
  72. Gallagher, T. M., & Sheldon, N. D. (2016). Combining soil water balance and clumped isotopes to understand the nature and timing of pedogenic carbonate formation. Chemical Geology 435, 79–91.Google Scholar
  73. Garrett, N. D., Fox, D. L., McNulty, K. P., Tryon, C. A., Faith, J. T., Peppe, D. J., et al. (2015). Stable isotope paleoecology of Late Pleistocene middle stone age humans from the equatorial East Africa, Lake Victoria basin, Kenya. Journal of Human Evolution, 82, 1–14.Google Scholar
  74. Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W., Schauble, E., et al. (2006). 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochimica et Cosmochimica Acta, 70, 1439–1456.Google Scholar
  75. Gile, L. H. (1979). Holocene soils in eolian sediments of Baily County, Texas. Soil Science Society of America Journal, 43, 994–1003.Google Scholar
  76. Gile, L. H., Peterson, F. F., & Grossman, R. B. (1966). Morphological and genetic sequences of carbonate accumulation in desert soils. Soil Science, 101.Google Scholar
  77. Gulbranson, E. L., Montanez, I. P., & Tabor, N. J. (2011). A proxy for humidity and floral province from paleosols. Journal of Geology, 119, 559–573.Google Scholar
  78. Guthrie, R. L., & Witty, J. E. (1982). New designations for soil horizons and layers and the new Soil Survey Manual. Soil Science Society of America Journal, 46(2), 443–444.Google Scholar
  79. Han, J. T., Fyfe, W. S., & Longstaffe, F. J. (1998). Climatic implications of the S5 paleosol complex on the southernmost Chinese Loess Plateau. Quaternary Research, 50, 21–33.Google Scholar
  80. Harnois, L. (1988). The CIW index: a new chemical index of weathering. Sedimentary Geology, 55, 319–322.Google Scholar
  81. Harris, W., & White, N. (2008). X-ray diffraction techniques for soil mineral identification. Methods of soil analysis part 5—Mineralogical methods. Madison: Soil Science Society of America.Google Scholar
  82. Hasiotis, S. T. (2007). Continental ichnology: fundamental processes and controls on trace-fossil distribution. In W. Miller III (Ed.), Trace fossils—Concepts, problems, prospects (pp. 268–284). Elsevier Press.Google Scholar
  83. Hasiotis, S. T., Platt, B. F., Hembree, D.I., & Everhart, M. (2007a). The trace-fossil record of vertebrates. In W. Miller III (Ed.), Trace fossils—Concepts, problems, prospects (pp. 196–218). Elsevier Press.Google Scholar
  84. Hasiotis, S. T., Kraus, M. J., & Demko, T. M. (2007b). Climate controls on continental trace fossils. In W. Miller III (Ed.), Trace fossils—Concepts, problems, prospects (pp. 172–195). Elsevier Press.Google Scholar
  85. Hasiotis, S. T., & Honey, J. G. (2000). Paleohydrologic and stratigraphic significant of crayfish burrows in continental deposits: examples from several Paleocene Laramide basins in the Rocky Mountains. Journal of Sedimentary Research, 70, 127–139.Google Scholar
  86. Hembree, D. I., Platt, B. F. & Smith, J. J. (Eds.) (2014). Experimental approaches to understanding fossil organisms: Lessons from the Living. Netherlands: Springer.Google Scholar
  87. Henkes, G. A., Passey, B. H., Grossman, E. L., Shenton, B. J., Perez-Huerta, A., & Yancey, T. E. (2014). Temperature limits for preservation of primary calcite clumped isotope paleotemperatures. Geochimica et Cosmochimica Acta, 139, 362–382.Google Scholar
  88. Holliday, V. T. (2004). Soils in archaeological research. Oxford: Oxford University Press.Google Scholar
  89. Holliday, V. T. (2006). A history of soil geomorphology in the United States. In B. P. Warkentin (Ed.), Footprints in the soil: People and ideas in soil history (pp. 187–254). Amsterdam: Elsevier.Google Scholar
  90. Holliday, V. T., & Gartner, W. G. (2007). Soil phosphorus and archaeology: a review and comparison of methods. Journal of Archaeological Science, 34, 301–333.Google Scholar
  91. Holloway, R. L., Broadfield, D. C., & Yuan, M. S. (2004). The human fossil record Vol. 3. Wiley.Google Scholar
  92. Hover, V. C., & Ashley, G. M. (2003). Geochemical signatures of paleodepositional and diagenetic environments: a STEM/AEM study of authigenic clay minerals from an arid rift basin, Olduvai Gorge, Tanzania. Clays and Clay Minerals, 51, 231–251.Google Scholar
  93. Huggett, R. J. (1998). Soil chronosequences, soil development, and soil evolution: a critical review. Catena, 32, 155–172.Google Scholar
  94. Hyland, E. G., Sheldon, N. D., Van der Voo, R., Badgley, C., & Abrajevitch, A. (2015). A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions. Geological Society of America Bulletin.Google Scholar
  95. Jenny, H. (1941). Factors of soil formation: a system of quantitative pedology. McGraw-Hill book company, Inc.Google Scholar
  96. Jenny, H. (1980). The soil resource. Origin and behavior. Berlin: Springer.Google Scholar
  97. Kemp, R. A. (1999). Micromorphology of loess-paleosol sequences: a record of paleoenvironmental change. Catena, 35, 179–196.Google Scholar
  98. Kraus, M. J. (1987). Integration of channel and floodplain suites in aggrading fluvial systems, II. Vertical relations of alluvial paleosols. Journal of Sedimentary Petrology, 57(4), 602–612.Google Scholar
  99. Kraus, M. J. (1997). Lower Eocene alluvial paleosols: pedogenic development, stratigraphic relationships, and paleosol/landscape associations. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 387–406.Google Scholar
  100. Kraus, M. J. (1999). Paleosols in clastic sedimentary rocks: their geologic applications. Earth-Science Review, 47, 41–70.Google Scholar
  101. Kraus, M. J., & Brown, T. M. (1988). Pedofacies analysis; a new approach to reconstructing ancient fluvial sequences. In J. Reinhard & W. R. Sigleo (Eds.), Paleosols and weathering through geologic time: Principles and applications (Geological Society of America Special Paper 216) (pp. 143–152). Denver: Geological Society of America.Google Scholar
  102. Kraus, M. J., & Hasiotis, S. T. (2006). Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. Journal of Sedimentary Research, 76, 633–646.Google Scholar
  103. Kubiena, W. (1970). Micromorphology of polygenetic soils and paleosoils in polar regions. Annales de Edafologia y Abrobiologia, 845–856.Google Scholar
  104. Leighton, M. M. (1937). The significance of profiles of weathering in stratigraphic archaeology. In G. G. MacCurdy (Ed.), Early Man (pp. 163–172). New York: Lippincott.Google Scholar
  105. Leopold, M., Völkel, J., Dethier, D., Huber, J., & Steffens, M. (2011). Characteristics of a paleosol and its implication for the Critical Zone development, Rocky Mountain Front Range of Colorado, USA. Applied Geochemistry, 26, S72–S75.Google Scholar
  106. Lepre, C. J., Quinn, R. L., Joordens, J. C. a, Swisher, C. C., & Feibel, C. S. (2007). Plio-Pleistocene facies environments from the KBS Member, Koobi Fora Formation: implications for climate controls on the development of lake-margin hominin habitats in the northeast Turkana Basin (northwest Kenya). Journal of Human Evolution, 53, 504–514.Google Scholar
  107. Levin, N. E. (2015). Environment and climate of early human evolution. Annual Review of Earth and Planetary Sciences, 43, 405–429.Google Scholar
  108. Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, USA, 103, 11201–11205.Google Scholar
  109. Levin, N. E., Quade, J., Simpson, S. W., Semaw, S., & Rogers, M. J. (2004). Isotopic evidence for Plio-Pleistocene environmental change at Gona, Ethiopia. Earth and Planetary Science Letters, 219, 93–110.Google Scholar
  110. Levin, N., Brown, F. H., Behrensmeyer, A. K., Bobe, R., & Cerling, T. E. (2011). Paleosol carbonates from the Omo Group: isotopic records of local and regional environmental change in East Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 307, 75–89.Google Scholar
  111. Lüdecke, T., Schrenk, F., Thiemeyer, H., Kullmer, O., Bromage, T. G., Sandrock, O., et al. (2016). Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi). Journal of Human Evolution, 90, 163–175.Google Scholar
  112. Ludvigson, G. A., Gonzalez, L. A., Fowle, D. A., Roberts, J. A., Driese, S. G., Villarreal, M. A., et al. (2013). Paleoclimatic applications and modern process studies of pedogenic siderite. In S. G. Driese & L. C. Nordt (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology (SEPM Special Publication No. 104) (pp. 47–62). Tulsa: SEPM.Google Scholar
  113. Ludvigson, G. A., Gonzalez, L. A., Metzger, R. A., Witzke, B. J., Brenner, R. L., Murillo, A. P., et al. (1998). Meteoric sphaerosiderite lines and their use for paleohydrology and paleoclimatology. Geology, 26, 1039–1042.Google Scholar
  114. Lüdecke, T., Schrenk, F., Thiemeyer, H., Kullmer, O., Bromage, T. G., Sandrock, O., et al. (2016b). Persistent C3 vegetation accompanied Plio-Pleistocene hominin evolution in the Malawi Rift (Chiwondo Beds, Malawi). Journal of Human Evolution, 90, 163–175.Google Scholar
  115. Lukens, W. E., Driese, S. G., Peppe, D. J., & Loudermilk, M. (2017a). Sedimentology, stratigraphy, and paleoclimate at the late Miocene Coffee Ranch fossil site in the Texas Panhandle. Palaeogeography, Palaeoclimatology, Palaeoecology, 485, 361–376.Google Scholar
  116. Lukens, W. E., Lehmann, T., Peppe, D. J., Fox, D. L., Driese, S. G., & McNulty, K. P. (2017b). The early Miocene Critical Zone at Karungu, Western Kenya: an equatorial, open habitat with few primate remains. Frontiers in Earth Science, 5, 87.Google Scholar
  117. Lukens, W. E., Nordt, L. C., Stinchcomb, G. E., Driese, S. G., & Tubbs, J. D. (2018). Reconstructing pH of Paleosols Using Geochemical Proxies. The Journal of Geology, 126(4), 427–449.Google Scholar
  118. Mack, G. H., James, W. C., & Monger, H. C. (1993). Classification of paleosols. Geological Society of America Bulletin, 105, 129–136.Google Scholar
  119. Machette, M. N. (1985). Calcic soils of the southwestern United States. In Geological Society of America Special Paper 203 (pp. 1–21).Google Scholar
  120. Machel, H. G., Mason, R. A., Mariano, A. N., & Mucci, A. (1991). Causes and emission of luminescence in calcite and dolomite. In C. E. Barker and O. C. Kopp (Eds.), Luminescence microscopy and spectroscopy: Quantitative and qualitative applications (SC25) (pp. 9–25). Tulsa: SEPM.Google Scholar
  121. Magill, C. R., Ashley, G. M., & Freeman, K. H. (2013a). Ecosystem variability and early human habitats in eastern Africa. Proceedings of the National Academy of Sciences, USA, 110, 1167–1174.Google Scholar
  122. Magill, C. R., Ashley, G. M., & Freeman, K. H. (2013b). Water, plants, and early human habitats in eastern Africa. Proceedings of the National Academy of Sciences, USA, 110, 1175–1180.Google Scholar
  123. Maher, B. A. (1998). Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137, 25–54.Google Scholar
  124. Maher, B. A., & Thompson, R. (1995). Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols. Quaternary Research, 44, 383–391.Google Scholar
  125. Marin-Spiotta, E., Chaopricha, N. T., Plante, A. F., Diefendorf, A. F., Mueller, C. W., Grandy, A. S., et al. (2014). Long-term stabilization of deep soil carbon by fire and burial during early Holocene climate change. Nature Geosci, 7, 428–432.Google Scholar
  126. Maxbauer, D. P., Feinberg, J. M., & Fox, D. L. (2016a). Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges. Earth-Science Review, 155, 28–48.Google Scholar
  127. Maxbauer, D. P., Feinberg, J. M., Fox, D. L., & Clyde, W. C. (2016b). Magnetic minerals as recorders of weathering, diagenesis, and paleoclimate: a core-outcrop comparison of Paleocene-Eocene paleosols in the Bighorn Basin, WY, USA. Earth and Planetary Science Letters, 452, 15–26.Google Scholar
  128. Maynard, J. B. (1992). Chemistry of modern soils as a guide to interpreting Precambrian paleosols. Journal of Geology, 100, 279–289.Google Scholar
  129. Medaris Jr, L. G., Driese, S. G., & Stinchcomb, G. E. (2017). The Paleoproterozoic Baraboo paleosol revisited: quantifying mass fluxes of weathering and metasomatism, chemical climofunctions, and atmospheric pCO2 in a chemically heterogeneous protolith. Precambrian Research, 301, 179–194.Google Scholar
  130. Mentzer, S. M. (2014). Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. Journal of Archaeoogical Method and Theory, 21, 616–668.Google Scholar
  131. Michel, L. A., Driese, S. G., Nordt, L. C., Breecker, D. O., Labotka, D. M., & Dworkin, S. I. (2013). Stable-Isotope geochemistry of Vertisols formed on marine limestone and implications for deep-time paleoenvironmental reconstructions. Journal of Sedimentary Research, 83, 300–308.Google Scholar
  132. Michel, L. A., Peppe, D. J., Lutz, Ja, Driese, S. G., Dunsworth, H. M., Harcourt-Smith, W. E. H., et al. (2014). Remnants of an ancient forest provide ecological context for Early Miocene fossil apes. Nature Communications, 5, 1–9.Google Scholar
  133. Mintz, J. S., Driese, S. G., Breecker, D. O., & Ludvigson, G. A. (2011). Influence of changing hydrology on pedogenic calcite precipitation in Vertisols, Dance Bayou, Brazoria County, Texas, U.S.A.: implications for estimating paleoatmospheric pCO2. Journal of Sedimentary Research, 81, 394–400.Google Scholar
  134. Moore, D. M., & Reynolds, R. C. (1997). X-Ray diffraction and the identification and analysis of clay minerals. New York: Oxford University Press.Google Scholar
  135. Mora, C. I., Driese, S. G., & Colarusso, L. A. (1996). Middle to Late Paleozoic atmospheric CO2 levels from soil carbonate and organic matter. Science, 271, 1105–1107.Google Scholar
  136. Morrison, R. B. (1967). Principles of Quaternary soil stratigraphy. In R. B. Morrison & H. E. Wright (Eds.), Quaternary soils (pp. 1–69). Reno: University of Nevada Desert Research Institute, Center for Water Resources Research.Google Scholar
  137. Myers, T. S., Tabor, N. J., & Rosenau, N. A. (2014). Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States). Geological Society of American Bulletin, 126, 1105–1116.Google Scholar
  138. National Research Council. (2001). Basic research opportunities in Earth science. Washington, D. C.: National Academies Press.Google Scholar
  139. National Research Council. (2010). Understanding climate’s influence on human evolution. Washington, D. C.: National Academies Press.Google Scholar
  140. Nettleton, W. D., Olson, C. G., & Wysocki, D. A. (2000). Paleosol classification: problems and solutions. Catena, 41, 61–92.Google Scholar
  141. Nesbitt, H. W., & Young, G. M. (1982). Earth Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.Google Scholar
  142. Nordt, L. C. (2001). Stable C and O isotopes in soils: applications for archaeological research. In P. Goldberg, V. Holliday & R. Ferring (Eds.), Earth-sciences and archaeology (pp. 419–445).Google Scholar
  143. Nordt, L. C., & Driese, S. D. (2010a). New weathering index improves paleorainfall estimates from Vertisols. Geology, 38, 407–410.Google Scholar
  144. Nordt, L. C., & Driese, S. G. (2010b). A modern soil characterization approach to reconstructing physical and chemical properties of paleo-Vertisols. American Journal of Science, 310, 37–64.Google Scholar
  145. Nordt, L. C., & Driese, S. G. (2013). Application of the Critical Zone concept to the deep-time sedimentary record. The Sedimentary Record, 11, 4–9.Google Scholar
  146. Nordt, L. C., Dworkin, S. I., & Atchley, S. C. (2011). Ecosystem response to soil biogeochemical behavior during the Late Cretaceous and early Paleocene within the western interior of North America. Geological Society of America Bulletin, 123, 1745–1762.Google Scholar
  147. Nordt, L. C., Hallmark, C. T., Driese, S. G., Dworkin, S. I., & Atchley, S. C. (2012). Biogeochemical characterization of a lithified paleosol: implications for the interpretation of ancient Critical Zones. Geochimica et Cosmochimica Acta, 87, 267–282.Google Scholar
  148. Nordt, L. C., Hallmark, C. T., Driese, S. G., & Dworkin, S. I. (2013). Multianalytical pedosystem approach to characterizing and interpreting the fossil record of soils. In S. G. Driese & L. C. Nordt (Eds.), New frontiers in paleopedology and terrestrial paleoclimatology (SEPM Special Publication No. 104) (pp. 47–62, 89–108). Tulsa: SEPM.Google Scholar
  149. Nordt, L., Orosz, M., Driese, S., & Tubbs, J. (2006). Vertisol carbonate properties in relation to mean annual precipitation: implications for paleoprecipitation estimates. Journal of Geology, 114, 501–510.Google Scholar
  150. Nordt, L. C., Wilding, L. P., Lynn, W. C., & Crawford, C. C. (2004). Vertisol genesis in a humid climate of the coastal plain of Texas, U.S.A. Geoderma, 122, 83–102.Google Scholar
  151. Oerter, E. J., Sharp, W. D., Oster, J. L., Ebeling, A., Valley, J. W., Kozdon, R., et al. (2016). Pedothem carbonates reveal anomalous North American atmospheric circulation 70,000–55,000 years ago. Proceedings of the National Academy of Sciences, USA, 113, 919–924.Google Scholar
  152. Passey, B. H., Levin, N. E., Cerling, T. E., Brown, F. H., & Eiler, J. M. (2010). High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proceedings of the National Academy of Sciences, USA, 107, 11245–11249.Google Scholar
  153. Passey, B. H., Hu, H., Ji, H., Montanari, S., Li, S., Henkes, G. A., et al. (2014). Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta, 141, 1–25.Google Scholar
  154. Pettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and sandstone (2nd ed.). Springer-Verlag.Google Scholar
  155. Poppe, L. J., Paskevich, V. F., Hathaway, J. C., & Blackwood, D. S. (2001). A laboratory manual for X-ray powder diffraction. US Geological Survey Open-File Report, 1(041), 1–88.Google Scholar
  156. Prochnow, S. J., Nordt, L. C., Atchley, S. C., & Hudec, M. R. (2006). Multi-proxy paleosol evidence for Middle and Late Triassic climate trends in eastern Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 232, 53–72.Google Scholar
  157. Pimentel, N. L., Wright, V. P., & Azevedo, T. M. (1996). Distinguishing early groundwater alteration effects from pedogensis in ancient alluvial basins: examples form the Palaeogene of southern Portugal. Sedimentary Geology, 105, 1–10.Google Scholar
  158. Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation & Development, 13(4), 275–294.CrossRefGoogle Scholar
  159. Quade, J., Levin, N., Semaw, S., Stout, D., Renne, P., Rogers, M., et al. (2004). Paleoenvironments of the earliest stone toolmakers, Gona, Ethiopia. Geological Society of America Bulletin, 116, 1529.Google Scholar
  160. Quade, J., Eiler, J., Daëron, M., Achyuthan, H. (2013). The clumped isotope geothermometer in soil and paleosol carbonate. Geochimica Cosmochimica Acta, 105, 92–107.Google Scholar
  161. Quinn, R. L., Lepre, C. J., Wright, J. D., & Feibel, C. S. (2007). Paleogeographic variations of pedogenic carbonate d13C values from Koobi Fora, Kenya: implications for floral compositions of Plio-Pleistocene hominin environments. Journal of Human Evolution, 53, 560–573.Google Scholar
  162. Quinn, R. L., Lepre, C. J., Feibel, C. S., Wright, J. D., Mortlock, R. A., Harmand, S., et al. (2013). Pedogenic carbonate stable isotopic evidence for wooded habitat preference of early Pleistocene tool makers in the Turkana Basin. Journal of Human Evolution, 65, 65–78.Google Scholar
  163. Rasmussen, C., & Tabor, N. J. (2007). Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Science Society of America Journal, 71(6), 1719–1729.Google Scholar
  164. Rasmussen, C., Southard, R. J., & Horwath, W. R. (2005). Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Science Society of America Journal, 69(4), 1266–1274.Google Scholar
  165. Rawls, W. J. (1983). Estimating soil bulk density from particle size analyses and organic matter content. Soil Science, 135, 123–125.Google Scholar
  166. Retallack, G. J. (1983). Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America. Special Papers, 193, 82.Google Scholar
  167. Retallack, G. J. (1997). Early forest soils and their role in Devonian global change. Science, 276, 583–585.Google Scholar
  168. Retallack, G. J., Wynn, J. G., Benefit, B. R., & Mccrossin, M. L. (2002). Paleosols and paleoenvironments of the middle Miocene, Maboko Formation, Kenya. Journal of Human Evolution, 42(6), 659–703.Google Scholar
  169. Retallack, G. J. (1994). The environmental-factor approach to the interpretation of paleosols. In R. J. Luxmoore & J. M. Bartels (Eds.), Factors of soil formation: A fiftieth anniversary retrospective (pp. 31–64). Madison: Soil Science Society of America.Google Scholar
  170. Retallack, G. J. (2001). Soils of the past: An introduction to paleopedology (2nd ed.). Oxford: Blackwell Science Ltd.Google Scholar
  171. Retallack, G. J. (2005). Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols. Geology, 33, 333–336.Google Scholar
  172. Retallack, G. J., James, W. C., Mack, G. H., & Monger, H. C. (1993). Classification of paleosols: discussion and reply. Geological Society of America Bulletin, 105, 1635–1637.Google Scholar
  173. Retallack, G. J., Orr, W. N., Prothero, D. R., Duncan, R. A., Kester, P. R., & Ambers, C. P. (2004). Eocene-Oligocene extinction and paleoclimatic change near Eugene. Oregon. Geological Society of America Bulletin, 116, 817.Google Scholar
  174. Retallack, G. J., & Huang, C. (2010). Depth to gypsic horizon as a proxy for paleoprecipitation in paleosols of sedimentary environments. Geology, 38, 403–406.Google Scholar
  175. Richter, D. deB, & Yaalon, D. H. (2012). “The changing model of soil” revisited. Soil Science Society of America Journal, 76, 766–778.Google Scholar
  176. Rosenau, N. A., Tabor, N. J., Elrick, S. D., & Nelson, W. J. (2013). Polygenetic history of paleosols in Middle-Upper Pennsylvanian cyclothems of the Illinois Basin, U.S.A.: Part I. Characterization of paleosol types and interpretations of pedogenic processes. Journal of Sedimentary Research, 83, 606–636.Google Scholar
  177. Ruhe, R. V. (1965). Quaternary paleopedology. In H. E. Wright, & D. G. Frey (Eds.), The Quaternary of the United States (pp. 755–764). Princeton, NJ: Princeton University Press.Google Scholar
  178. Saxton, K. E., & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70, 1569–1578.Google Scholar
  179. Schaetzl, R. J., & Thompson, M. L. (2015). Soils: Cambridge University Press.Google Scholar
  180. Schoeneberger, P. J., Wysocki, D. A., Benham, E. C., & Broderson, W. D. (2012). Field book for describing and sampling soils, version 3.0. Lincoln: Natural Resources Conservation Service, National Soil Survey Center.Google Scholar
  181. Schwertmann, U. (1993). Relations between iron oxides, soil color, and soil formation. In J. M. Bigham & E. J. Ciolkosz (Eds.), Soil color (Special Publication No. 31) (pp. 51–69). Madison: Soil Science Society of America.Google Scholar
  182. Sheldon, N. (2003). Pedogenesis and geochemical alteration of the Picture Group subgroup, Columbia River basalt, Oregon. Geological Society of America Bulletin, 115, 1377–1387.Google Scholar
  183. Sheldon, N. D. (2005). Do red beds indicate paleoclimatic conditions?: a Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 305–319.Google Scholar
  184. Sheldon, N. D. (2006). Precambrian paleosols and atmospheric CO2 levels. Precambrian Research, 147, 148–155.Google Scholar
  185. Sheldon, N. D., & Retallack, G. J. (2001). Equation for compaction of paleosols due to burial. Geology, 29, 247–250.Google Scholar
  186. Sheldon, N. D., & Retallack, G. J. (2004). Regional paleoprecipitation records from the late eocene and oligocene of North America. The Journal of Geology, 112, 487–494.Google Scholar
  187. Sheldon, N. D., & Tabor, N. J. (2009). Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Science Review, 95, 1–52.Google Scholar
  188. Sheldon, N. D., Retallack, G. J., & Tanaka, S. (2002). Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. Journal of Geology, 110, 687–696.Google Scholar
  189. Sikes, N. E., Potts, R., & Behrensmeyer, A. K. (1999). Early Pleistocene habitat in member 1 Olorgesailie based on paleosol stable isotopes. Journal of Human Evolution, 37, 721–746.Google Scholar
  190. Sikes, N. E., & Ashley, G. M. (2007). Stable isotopes of pedogenic carbonates as indicators of paleoecology in the Plio-Pleistocene (upper Bed I), western margin of the Olduvai Basin, Tanzania. Journal of Human Evolution, 53, 574–594.Google Scholar
  191. Snell, K. E., Thrasher, B. L., Eiler, J. M., Koch, P. L., Sloan, L. C., & Tabor, N. J. (2013). Hot summers in the Bighorn Basin during the early Paleogene. Geology, 41, 55–58.Google Scholar
  192. Soil Classification Working Group. (1998). The Canadian system of soil classification (3rd ed., Agriculture and Agri-Food Canada Publication 1646). Ottawa: NRC Research Press.Google Scholar
  193. Soil Survey Staff. (2006). Keys to soil taxonomy (10th ed.). Washington, D. C.: United States Department of Agriculture Natural Resources Conservation Service.Google Scholar
  194. Soil Survey Staff. (2014a). Illustrated guide to soil taxonomy (1.0 ed.). Lincoln: United States Department of Agriculture Natural Resources Conservation Service.Google Scholar
  195. Soil Survey Staff. (2014b). Kellogg soil survey laboratory methods manual, Version 5.0. (Soil Survey Investigations Report No. 42). Lincoln: United States Department of Agriculture Natural Resources Conservation Service.Google Scholar
  196. Stiles, C. A., Mora, C. I., & Driese, S. G. (2001). Pedogenic iron-manganese nodules in Vertisols: a new proxy for paleoprecipitation? Geology, 29, 943–946.Google Scholar
  197. Stiles, C. A., Mora, C. I., & Driese, S. G. (2003a). Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma, 116, 279–299.Google Scholar
  198. Stiles, C. A., Mora, C. I., Driese, S. G., & Robinson, A. C. (2003b). Distinguishing climate and time in the soil record: mass-balance trends in Vertisols from the Texas coastal prairie. Geology, 31, 331–334.Google Scholar
  199. Stinchcomb, G. E., Driese, S. G., Nordt, L. C., DiPietro, L., & Messner, T. C. (2014). Early Holocene soil cryoturbation in northeastern USA: implications for archaeological site formation. Quaternary International, 342, 186–198.Google Scholar
  200. Stinchcomb, G. E., Nordt, L. C., Driese, S. G., Lukens, W. E., Williamson, F. C., & Tubbs, J. D. (2016). A data-driven spline model designed to predict paleoclimate using paleosol geochemistry. American Journal of Science, 316, 746–777.Google Scholar
  201. Stoops, G. (2003). Guidelines for analysis and description of soil and regolith thin sections. Madison: Soil Science Society of America, Inc.Google Scholar
  202. Stoops, G., Marcelino, V., & Mees, F. (Eds.) (2010). Interpretation of micromorphological features of soils and regoliths, 1st ed. Netherlands: Elsevier.Google Scholar
  203. Tabor, N. J., & Montañez, I. P. (2002). Shifts in late Paleozoic atmospheric circulation over western equatorial Pangea: insights from pedogenic mineral δ18O compositions. Geology, 30, 1127–1130.Google Scholar
  204. Tabor, N. J., & Myers, T. S. (2015). Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Science, 43, 11.1–11.29.Google Scholar
  205. Tabor, N. J., Montañez, I. P., Steiner, M. B., & Schwindt, D. (2007). δ13C values of carbonate nodules across the Permian-Triassic boundary in the Karoo Supergroup (South Africa) reflect a stinking sulfurous swamp, not atmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 252, 370–381.Google Scholar
  206. Terry, D. O. (2001). Paleopedology of the Chadron Formation of northwestern Nebraska: implications for paleoclimatic change in the North America midcontinent across the Eocene-Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 168, 1–38.Google Scholar
  207. Torres, M. A., & Gaines, R. R. (2013). Paleoenvironmental and paleoclimatic interpretations of the late Paleocene Golder Formations, southern California, U.S.A., based on paleosol geochemistry. Journal of Sedimentary Research, 83, 591–605.Google Scholar
  208. Trendell, A. M., Nordt, L. C., Atchley, S. C., LeBlanc, S. L., & Dworkin, S. I. (2013a). Determining floodplain plant distributions and populations using paleopedology and fossil root traces: upper Triassic Sonsela Member of the Chinle Formation at Petrified Forest National Park, Arizona. PALAIOS, 28, 471–490.Google Scholar
  209. Trendell, A. M., Atchley, S. C., & Nordt, L. C. (2013b). Facies analysis of a probable large-fluvial-fan depositional system: the Upper Triassic Chinle Formation at Petrified Forest National Park, Arizona, U.S.A. Journal of Sedimentary Research, 83, 873–895.Google Scholar
  210. Ufnar, D. F., Ludvigson, G. A., González, L. A., Brenner, R. L., & Witzke, B. J. (2004). High latitude meteoric δ18O compositions: paleosol siderite in the Middle Cretaceous Nanushuk Formation, North Slope. Alaska. Geological Society of America Bulletin, 116(3/4), 463–473.Google Scholar
  211. Ufnar, D. (2007). Clay coatings from a modern soil chronosequence: a tool for estimating the relative age of well-drained paleosols. Geoderma, 141, 181–200.Google Scholar
  212. Valentine, K. W. G., & Dalrymple, J. B. (1976). Quaternary buried paleosols: a critical review. Quaternary Research, 6, 209–222.Google Scholar
  213. Vepraskas, M. J. (1992). Redoximorphic features for identifying aquic conditions. North Carolina State University Technical Bulletin 301. Raleigh: North Carolina Agricultural Research Service.Google Scholar
  214. Vepraskas, M. J. (2001). Morphological features of seasonally reduced soils. Wetland soils: Genesis, hydrology, landscapes, and classification (pp. 163–182). New York: Lewis Publishers.Google Scholar
  215. Vepraskas, M. J., & Faulkner, S. P. (2001). Redox chemistry of hydric soils. In J. L. Richardson & M. J. Vepraskas (Eds.), Wetland soils: Genesis, hydrology, landscapes, and classification (pp. 85–105). New York: Lewis Publishers.Google Scholar
  216. Waters, M. R. (1992). Principles of geoarchaeology: A North American perspective. Tucson: University of Arizona Press.Google Scholar
  217. Waters, M. R., Forman, S. L., Jennings, T. A., Nordt, L. C., Driese, S. G., Feinberg, J. M., et al. (2011). The Buttermilk Creek Complex and the origins of Clovis at the Debra L. Friedkin Site. Texas. Science, 331, 1599–1603.Google Scholar
  218. Weider, M., & Yaalon, D. H. (1982). Micromorphological fabrics and developmental stages of carbonate nodular forms related to soil characteristics. Geoderma, 28, 203–220.Google Scholar
  219. White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., et al. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326(64), 75–86.Google Scholar
  220. WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., et al. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. Science, 326, 65, 65e1–65e5.Google Scholar
  221. Wynn, J. G. (2000). Paleosols, stable carbon isotopes, and paleoenvironmental interpretation of Kanapoi, Northern Kenya. Journal of Human Evolution, 39, 411–432.Google Scholar
  222. Wynn, J. G. (2004). Influence of Plio-Pleistocene aridification on human evolution: evidence from paleosols of the Turkana Basin, Kenya. American Journal of Physical Anthropoloy, 123, 106–118.Google Scholar
  223. Wynn, J. G. (2007). Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols. Palaeogeography, Palaeoclimatology, Palaeoecology, 251, 437–448.Google Scholar
  224. Wynn, J. G., & Feibel, C. S. (1995). Paleoclimatic implications of Vertisols within the Koobi Fora Formation, Turkana Basin, Northern Kenya. Journal of Undergraduate Research, 6, 34–42.Google Scholar
  225. Yaalon, D.H., International Society of Soil Science, International Union for Quaternary Research. (1971). Paleopedology: origin, nature, and dating of paleosols. Jerusalem: International Society of Soil Science.Google Scholar
  226. Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: forms and formation processes. Earth-Science Reviews, 157, 1–17.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emily J. Beverly
    • 1
    • 2
    • 3
  • William E. Lukens
    • 2
  • Gary E. Stinchcomb
    • 4
  1. 1.Department of GeosciencesGeorgia State UniversityAtlantaUSA
  2. 2.Terrestrial Paleoclimatology Group, Department of GeologyBaylor UniversityWacoUSA
  3. 3.Earth and Environmental Sciences, University of MichiganAnn ArborUSA
  4. 4.Department of Geosciences and Watershed Studies Institute, Murray State UniversityMurrayUSA

Personalised recommendations