Reconstructing Terrestrial Paleoenvironments Using Sedimentary Organic Biomarkers

  • Melissa A. BerkeEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


Organic geochemical biomarkers are an increasingly utilized set of tools for reconstructing past terrestrial conditions. These biomarkers can be preserved from all life, representing Archaea, Eukarya, and Bacteria, and are deposited in sediments and soils, and yet they can be separated in the laboratory for analysis of individual compounds from the same sample. Often well preserved in the geologic record, new proxies based on these “molecular fossils” extracted from sedimentary archives have allowed for the reconstruction of a wide array of paleoenvironmental and paleoclimatic conditions, including but not limited to past temperature, vegetation, and hydroclimate. This review provides a brief overview of those molecular proxies that might be most applicable for terrestrial environmental conditions.


Molecular proxies Compound specific stable isotopes Paleoclimate Biomarkers Organic geochemistry 


  1. Aichner, B., Herzschuh, U., & Wilkes, H. (2010). Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau. Organic Geochemistry, 41, 706–718.Google Scholar
  2. Allison, G. B., Barnes, C. J., & Hughes, M. W. (1983). The distribution of deuterium and 18O in dry soils 2. Experimental. Journal of Hydrology, 64, 377–397.Google Scholar
  3. Barnes, C. J., & Allison, G. B. (1983). The distribution of deuterium and 18O in dry soils: 1. Theory. Journal of Hydrology, 60, 141–156.Google Scholar
  4. Bastow, T. P., Singh, R. K., van Aarssen, B. G. K., Alexander, R., & Kagi, R. I. (2001). 2-Methylretene in sedimentary material: a new higher plant biomarker. Organic Geochemistry, 32, 1211–1217.Google Scholar
  5. Berke, M., Tipple, B., Hambach, B., & Ehleringer, J. (2015a). Life form-specific gradients in compound-specific hydrogen isotope ratios of modern leaf waxes along a North American monsoonal transect. Oecologia, 179, 1–17.Google Scholar
  6. Berke, M. A., Bush, R. T., Cartagena-Sierra, A., Cheah, D., Costello, C., Muldoon, T., & Tillema, M. (2015b). Environmental and physiological controls on plant leaf wax δD from western greenland. Proceedings American Geophysical Union, Abstract PP33A-2282.Google Scholar
  7. Berke, M. A., Johnson, T. C., Werne, J. P., Grice, K., Schouten, S., & Sinninghe Damsté, J. S. (2012a). Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quaternary Science Reviews, 55, 59–74.Google Scholar
  8. Berke, M. A., Johnson, T. C., Werne, J. P., Livingstone, D. A., Grice, K., Schouten, S., et al. (2014). Characterization of the last deglacial transition in tropical East Africa: insights from Lake Albert. Palaeogeography, Palaeoclimatology, Palaeoecology, 409, 1–8.Google Scholar
  9. Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S., & Sinninghe Damsté, J. S. (2012b). A mid-Holocene thermal maximum at the end of the African Humid Period. Earth and Planetary Science Letters, 351–352, 95–104.Google Scholar
  10. Berner, R. A. (1989). Biogeochemical cycles of carbon and sulfur and their effect on atmospheric oxygen over phanerozoic time. Global and Planetary Change, 1, 97–122.Google Scholar
  11. Besnard, G., Muasya, A. M., Russier, F., Roalson, E. H., Salamin, N., & Christin, P.-A. (2009). Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Molecular Biology and Evolution, 26, 1909–1919.Google Scholar
  12. Bijl, P. K., Bendle, J. A. P., Bohaty, S. M., Pross, J., Schouten, S., Taux, L., Stickley, C. E., McKay, R. M., Röhl, U., Olney, M., Sluijs, A., Escutial, C., Brinkhuis, H., & Expedition 318 Scientists, (2013). Eocene cooling linked to early flow across the Tasmanian Gateway. Proceedings of the National Academy of Sciences, USA, 110, 9645–9650.Google Scholar
  13. Bijl, P. K., Schouten, S., Brinkhuis, H., Sluijs, A., Reichart, G. J., & Zachos, J. C. (2009). Early Palaeogene temperature evolution of the Southwest Pacific Ocean. Nature, 461, 776–779.Google Scholar
  14. Black Jr, C. C. (1973). Photosynthetic carbon fixation in relation to net CO2 uptake. Annual Review of Plant Physiology, 24, 253–286.Google Scholar
  15. Blaga, C., Reichart, G.-J., Heiri, O., & Sinninghe Damsté, J. (2009). Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. Journal of Paleolimnology, 41, 523–540.Google Scholar
  16. Blaga, C. I., Reichart, G.-J., Schouten, S., Lotter, A. F., Werne, J. P., Kosten, S., et al. (2010). Branched glycerol dialkyl glycerol tetraethers in lake sediments: can they be used as temperature and pH proxies? Organic Geochemistry, 41, 1225–1234.Google Scholar
  17. Blumer, M., Guillard, R. R. L., & Chase, T. (1971). Hydrocarbons of marine plankton. Marine Biology, 8, 183–189.Google Scholar
  18. Blyth, A. J., Baker, A., Collins, M. J., Penkman, K. E. H., Gilmour, M. A., Moss, J. S., et al. (2008). Molecular organic matter in speleothems and its potential as an environmental proxy. Quaternary Science Reviews, 27, 905–921.Google Scholar
  19. Bowen, G. J., & Revenaugh, J. (2003). Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research, 39, 1299.Google Scholar
  20. Brand, W. A. (2004). In P. A. de Groot (Ed.), Handbook of stable isotope analytical techniques (pp. 835–856). Amsterdam: Elsevier.Google Scholar
  21. Bray, E. E., & Evans, E. D. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2–15.Google Scholar
  22. Brittingham, A., Hren, M., & Hartman, G. (2017). Microbial alteration of the hydrogen and carbon isotopic composition of n-alkanes in sediments. Organic Geochemistry, 107, 1–8.Google Scholar
  23. Brocks, J. J., Grosjean, E., & Logan, G. A. (2008). Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochimica et Cosmochimica Acta, 72, 871–888.Google Scholar
  24. Brocks, J. J., & Summons, R. E. (2003). Sedimentary hydrocarbons, biomarkers for early life. In W. Schlesinger (Ed.), Treatise on geochemistry 8, (pp. 63–115). Amsterdam: Elsevier.Google Scholar
  25. Burdige, D. J. (2007). Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chemical Reviews, 107, 467–485.Google Scholar
  26. Bush, R. T., & McInerney, F. A. (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochimica et Cosmochimica Acta, 117, 161–179.Google Scholar
  27. Bush, R. T., & McInerney, F. A. (2015). Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Organic Geochemistry, 79, 65–73.Google Scholar
  28. Calvert, S. E., & Pedersen, T. F. (1993). Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Marine Geology, 113, 67–88.Google Scholar
  29. Canfield, D. E. (1994). Factors influencing organic carbon preservation in marine sediments. Chemical Geology, 114, 315–329.Google Scholar
  30. Carr, A. S., Boom, A., & Chase, B. M. (2010). The potential of plant biomarker evidence derived from rock hyrax middens as an indicator of palaeoenvironmental change. Palaeogeography, Palaeoclimatology, Palaeoecology, 285, 321–330.Google Scholar
  31. Carrillo-Hernandez, T., Schaeffer, P., Adam, P., Albrecht, P., Derenne, S., & Largeau, C. (2003). Remarkably well-preserved archaeal and bacterial membrane lipids in 140 million year old sediments from the Russian platform (Kashpir Oil Shales, Upper Jurassic). In Proceedings, 21st International Meeting on Organic Geochemistry (pp. 77–78). Krakow.Google Scholar
  32. Carroll, A. R., & Bohacs, K. M. (2001). Lake-type controls on petroleum source rock potential in nonmarine basins. AAPG Bulletin, 85, 1033–1053.Google Scholar
  33. Castañeda, I. S., Mulitza, S., Schefuß, E., Lopes dos Santos, R. A., Sinninghe Damsté, J. S., & Schouten, S. (2009a). Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proceedings of the National Academy of Sciences, USA, 106, 20159–20163.Google Scholar
  34. Castañeda, I. S., & Schouten, S. (2011). A review of molecular organic proxies for examining modern and ancient lacustrine environments. Quaternary Science Reviews, 30, 2851–2891.Google Scholar
  35. Castañeda, I. S., Werne, J., & Johnson, T. C. (2007). Wet and arid phases in the southeast African tropics since the Last Glacial Maximum. Geology, 35, 823–826.Google Scholar
  36. Castañeda, I. S., Werne, J. P., Johnson, T. C., & Filley, T. R. (2009b). Late Quaternary vegetation history of southeast Africa: the molecular isotopic record from Lake Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology, 275, 100–112.Google Scholar
  37. Cerling, T. E. (1999). Paleorecords of C4 plants and ecosystems. In R. F. Sage & R. K. Monson (Eds.), C4 plant biology. San Diego, CA, USA: Academic Press.Google Scholar
  38. Cerling, T. E., & Harris, J. M. (1999). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia, 120, 347–363.Google Scholar
  39. Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., et al. (1997). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153–158.Google Scholar
  40. Cerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K., Levin, N. E., et al. (2011). Woody cover and hominin environments in the past 6 million years. Nature, 476, 51–56.Google Scholar
  41. Chase, B. M., Scott, L., Meadows, M. E., Gil-Romera, G., Boom, A., Carr, A. S., et al. (2012). Rock hyrax middens: a palaeoenvironmental archive for southern African drylands. Quaternary Science Reviews, 56, 107–125.Google Scholar
  42. Chikaraishi, Y., & Naraoka, H. (2003). Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63, 361–371.Google Scholar
  43. Chikaraishi, Y., & Naraoka, H. (2007). δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Organic Geochemistry, 38, 198–215.Google Scholar
  44. Chikaraishi, Y., Naraoka, H., & Poulson, S. R. (2004). Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry, 65, 1369–1381.Google Scholar
  45. Chikaraishi, Y., Tanaka, R., Tanaka, A., & Ohkouchi, N. (2009). Fractionation of hydrogen isotopes during phytol biosynthesis. Organic Geochemistry, 40, 569–573.Google Scholar
  46. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., et al. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10, 172–185.Google Scholar
  47. Coley, P. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53, 209–233.Google Scholar
  48. Collister, J. W., Lichtfouse, E., Hieshima, G., & Hayes, J. M. (1994a). Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Organic Geochemistry, 21, 645–659.Google Scholar
  49. Collister, J. W., Rieley, G., Stern, B., Eglinton, G., & Fry, B. (1994b). Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Organic Geochemistry, 21, 619–627.Google Scholar
  50. Coolen, M. J. L., & Overmann, J. (1988). Analysis of subfossil molecular remains of purple sulfur bacteria in a lake sediment. Applied and Environmental Microbiology, 64, 4513–4521.Google Scholar
  51. Coplen, T. B. (1988). Normalization of oxygen and hydrogen isotope data. Chemical Geology: Isotope Geoscience Section, 72, 293–297.Google Scholar
  52. Coplen, T. B. (2011). Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry, 25, 2538–2560.Google Scholar
  53. Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.Google Scholar
  54. Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In E. Tongiogi (Ed.), Proceedings of a conference on stable isotopes in oceanographic studies and paleotemperatures (pp. 9–130) Spoleto, Italy: V. Lishi e F.Google Scholar
  55. Cranwell, P. A. (1973). Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change. Freshwater Biology, 3, 259–265.Google Scholar
  56. Cranwell, P. A. (1981). Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Organic Geochemistry, 3, 79–89.Google Scholar
  57. Cranwell, P. A. (1984). Lipid geochemistry of sediments from Upton Broad, a small productive lake. Organic Geochemistry, 7, 25–37.Google Scholar
  58. Cranwell, P. A., Eglinton, G., & Robinson, N. (1987). Lipids of aquatic organisms as potential contributors to lacustrine sediments. Organic Geochemistry, 11, 513–527.Google Scholar
  59. D’Andrea, W. J., Huang, Y., Fritz, S. C., & Anderson, N. J. (2011). Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proceedings of the National Academy of Sciences, USA, 108, 9765–9769.Google Scholar
  60. D’Andrea, W. J., Lage, M., Martiny, J. B. H., Laatsch, A. D., Amaral-Zettler, L. A., Sogin, M. L., et al. (2006). Alkenone producers inferred from well-preserved 18S rDNA in Greenland lake sediments. Journal of Geophysical Research-Biogeosciences, 111, G03013.Google Scholar
  61. D’Anjou, R. M., Bradley, R. S., Balascio, N. L., & Finkelstein, D. B. (2012). Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. Proceedings of the National Academy of Sciences, USA, 109, 20332–20337.Google Scholar
  62. Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.Google Scholar
  63. Dawson, T. E. (1993). Water sources of plants as determined from xylem-water isotopic composition: perspectives on plant competition, distribution, and water relations. In J. R. Ehleringer, A. E. Hall & G. D. Farquhar (Eds.), Stable isotopes and plant carbon-water relations (pp. 465–496) San Diego: Academic Press.Google Scholar
  64. Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507–559.Google Scholar
  65. De Jonge, C., Hopmans, E. C., Stadnitskaia, A., Rijpstra, W. I. C., Hofland, R., Tegelaar, E., et al. (2013). Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS, GC–MS and GC–SMB-MS. Organic Geochemistry, 54, 78–82.Google Scholar
  66. De Jonge, C., Hopmans, E. C., Zell, C. I., Kim, J.-H., Schouten, S., & Sinninghe Damsté, J. S. (2014). Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 141, 97–112.Google Scholar
  67. De Leeuw, J. W., & Largeau, C. (1993). A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, & petroleum formation. In M. Engel & S. Macko (Eds.), Organic geochemistry (Vol. 11, pp. 23–72). US: Springer.Google Scholar
  68. Dean, W. E., & Gorham, E. (1998). Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 26, 535–538.Google Scholar
  69. Deines, P. (1980). The isotopic composition of reduced organic carbon. In P. Fritz & J. C. Fontes (Eds.), Handbook of environmental geochemistry: The terrestrial environment (Vol. 1, pp. 329–406). Amsterdam: Elsevier.Google Scholar
  70. Diefendorf, A. F., Freeman, K. H., & Wing, S. L. (2012). Distribution and carbon isotope patterns of diterpenoids and triterpenoids in modern temperate C3 trees and their geochemical significance. Geochimica et Cosmochimica Acta, 85, 342–356.Google Scholar
  71. Diefendorf, A. F., Freeman, K. H., Wing, S. L., & Graham, H. V. (2011). Production of n-alkyl lipids in living plants and implications for the geologic past. Geochimica et Cosmochimica Acta, 75, 7472–7485.Google Scholar
  72. Diefendorf, A. F., & Freimuth, E. J. (2017). Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Organic Geochemistry, 103, 1–21.Google Scholar
  73. Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. (2010). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences, USA, 107, 5738–5743.Google Scholar
  74. Diefendorf, A. F., Sberna, D. T., & Taylor, D. W. (2015). Effect of thermal maturation on plant-derived terpenoids and leaf wax n-alkyl components. Organic Geochemistry, 89–90, 61–70.Google Scholar
  75. Dunkley Jones, T., Lunt, D. J., Schmidt, D. N., Ridgwell, A., Sluijs, A., Valdes, P. J., et al. (2013). Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene Thermal Maximum. Earth-Science Reviews, 125, 123–145.Google Scholar
  76. Eberle, J. J., Fricke, H. C., Humphrey, J. D., Hackett, L., Newbrey, M. G., & Hutchison, J. H. (2010). Seasonal variability in Arctic temperatures during early Eocene time. Earth and Planetary Science Letters, 296, 481–486.Google Scholar
  77. Eglinton, G., & Hamilton, R. J. (1963). The distribution of alkanes. In T. Swaine (Ed.), Chemical plant taxonomy (pp. 87–217). US: Academic.Google Scholar
  78. Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156, 1322–1335.Google Scholar
  79. Eglinton, T. I., & Eglinton, G. (2008). Molecular proxies for paleoclimatology. Earth and Planetary Science Letters, 275, 1–16.Google Scholar
  80. Ehleringer, J. R., Cerling, T. E., & Helliker, B. R. (1997). C4 photosynthesis, atmospheric CO2, and climate. Oecologia, 112, 285–299.Google Scholar
  81. Ehleringer, J. R., & Dawson, T. E. (1992). Water uptake by plants: perspectives from stable isotopes. Plant, Cell and Environment, 15, 1073–1082.Google Scholar
  82. Ehleringer, J. R., Evans, R. D., & Williams, D. (1998). Assessing sensitivity to change in desert ecosystems—A stable isotope approach. In H. Griffiths (Ed.), Stable isotopes: Integration of biological, ecological, and geochemical processes (pp. 223–237). Oxford: BIOS Scientific Publishing.Google Scholar
  83. Ehleringer, J. R., & Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Reviews of Ecological Systematics, 24, 411–439.Google Scholar
  84. Ehleringer, J. R., Phillips, S. L., Schuster, W. S. F., & Sandquist, D. R. (1991). Differential utilization of summer rains by desert plants. Oecologia, 88, 430–434.Google Scholar
  85. Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.Google Scholar
  86. Fawcett, P. J., Werne, J. P., Anderson, R. S., Heikoop, J. M., Brown, E. T., Berke, M. A., et al. (2011). Extended megadroughts in the southwestern United States during Pleistocene interglacials. Nature, 470, 518–521.Google Scholar
  87. Feakins, S. J. (2013). Pollen-corrected leaf wax D/H reconstructions of northeast African hydrological changes during the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 374, 62–71.Google Scholar
  88. Feakins, S. J., & Sessions, A. L. (2010). Controls on the D/H ratios of plant leaf waxes in an arid ecosystem. Geochimica et Cosmochimica Acta, 74, 2128–2141.Google Scholar
  89. Feakins, S. J., Warny, S., & Lee, J.-E. (2012). Hydrologic cycling over Antarctica during the middle Miocene warming. Nature Geoscience, 5, 557–560.Google Scholar
  90. Ficken, K. J., Li, B., Swain, D. L., & Eglinton, G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745–749.Google Scholar
  91. Gaines, S. M., Eglinton, G. & Rullkotter, J. (2008). Echoes of life: What fossil molecules reveal about Earth history. Oxford University Press.Google Scholar
  92. Gat, J. R. (1996). Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences, 24, 225–262.Google Scholar
  93. Goni, M. A., Nelson, B., & Blanchette, R. A. (1993). Fungal degradation of wood lignins: geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochimica et Cosmochimica Acta, 57, 3985–4002.Google Scholar
  94. Goni, M. A., & Thomas, K. A. (2000). Sources and transformations of organic matter in surface soils and sediments from a tidal estuary (North Inlet, South Carolina, USA). Estuaries, 23, 548–564.Google Scholar
  95. Grice, K., & Eiserbeck, C. (2014). The analysis and application of biomarkers. In H. Holland & K. Turekian (Eds.), Treatise on geochemistry (pp. 47–77). Oxford: Elsevier.Google Scholar
  96. Gupta, N. S., Collinson, M. E., Briggs, D. E. G., Evershed, R. P., & Pancost, R. D. (2006). Reinvestigation of the occurrence of cutan in plants: implications for the leaf fossil record. Paleobiology, 32, 432–449.Google Scholar
  97. Gupta, N. S., Michels, R., Briggs, D. E. G., Collinson, M. E., Evershed, R. P., & Pancost, R. D. (2007). Experimental evidence for the formation of geomacromolecules from plant leaf lipids. Organic Geochemistry, 38, 28–36.Google Scholar
  98. Hallmann, C., Schwark, L., & Grice, K. (2008). Community dynamics of anaerobic bacteria in deep petroleum reservoirs. Nature Geoscience, 1, 588–591.Google Scholar
  99. Hautevelle, Y., Michels, R., Malartre, F., & Trouiller, A. (2006). Vascular plant biomarkers as proxies for palaeoflora and palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France). Organic Geochemistry, 37, 610–625.Google Scholar
  100. Hedges, J. I., & Keil, R. G. (1995). Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49, 81.Google Scholar
  101. Hedges, J. I., & Mann, D. C. (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43, 1803–1807.Google Scholar
  102. Hedges, J. I., Turin, H. J., & Ertel, J. R. (1984). Sources and distributions of sedimentary organic matter in the Columbia River drainage basin, Washington and Oregon. Limnology and Oceanography, 29, 35–46.Google Scholar
  103. Hedges, J. I., & Van Green, A. (1982). A comparison of lignin and stable carbon isotope compositions in Quaternary marine sediments. Geochimica et Cosmochimica Acta, 11, 43–54.Google Scholar
  104. Herbert, T. D. (2001). Review of alkenone calibrations (culture, water column, and sediments). Geochemistry, Geophysics, and Geosystems, 2, 1055.Google Scholar
  105. Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., & Sinninghe Damsté, J. S. (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224, 107–116.Google Scholar
  106. Hou, J., D’Andrea, W. J., & Huang, Y. (2008). Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, & experimental assessments. Geochimica et Cosmochimica Acta, 72, 3503–3517.Google Scholar
  107. Hu, F. S., Hedges, J. I., Gordon, E. S., & Brubaker, L. B. (1999). Lignin biomarkers and pollen in postglacial sediments of an Alaskan lake. Geochimica et Cosmochimica Acta, 63, 1421–1430.Google Scholar
  108. Huang, Y., Shuman, B., Wang, Y., & Webb III, T. (2004). Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology, 31, 363–375.Google Scholar
  109. Huang, Y., Shuman, B., Wang, Y., Webb III, T., Grimm, E. C., & Jacobson, J. (2006). Climatic and environmental controls on the variations of C3 and C4 plant abundances in central Florida for the past 62,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 428–435.Google Scholar
  110. Huguet, C., de Lange, G. J., Gustafsson, Ö., Middelburg, J. J., Sinninghe Damsté, J. S., & Schouten, S. (2008). Selective preservation of soil organic matter in oxidized marine sediments (Madeira Abyssal Plain). Geochimica et Cosmochimica Acta, 72, 6061.Google Scholar
  111. Huguet, C., Kim, J.-H., de Lange, G. J., Sinninghe Damsté, J. S., & Schouten, S. (2009). Effects of long term oxic degradation on the UK’ 491 37, TEX86 and BIT organic proxies. Organic Geochemistry, 40, 1188–1194.Google Scholar
  112. Huguet, C., Martens-Habbena, W., Urakawa, H., Stahl, D. A., & Ingalls, A. E. (2010). Comparison of extraction methods for quantitative analysis of core and intact polar glycerol tetraethers (GDGTs) in environmental samples. Limnology and Oceanography: Methods, 8, 127–145.Google Scholar
  113. Huguet, C., Schimmelmann, A., Thunell, R., Lourens, L. J., Sinninghe Damsté, J. S., & Schouten, S. (2007). A study of the TEX86 paleothermometer in the water column and sediments of the Santa Barbara Basin, California. Paleoceanography, 22, PA3203.Google Scholar
  114. Inagaki, F., Hinrichs, K.-U., Kubo, Y., Bowles, M. W., Heuer, V. B., Hong, W.-L., et al. (2015). Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science, 349, 420–424.Google Scholar
  115. Innes, H. E., Bishop, A. N., Fox, P. A., Head, I. M., & Farrimond, P. (1998). Early diagenesis of bacteriohopanoids in recent sediments of Lake Pollen, Norway. Organic Geochemistry, 29, 1285–1295.Google Scholar
  116. Jaraula, C. M. B., Brassell, S. C., Morgan-Kiss, R. M., Doran, P. T., & Kenig, F. (2010). Origin and tentative identification of tri to pentaunsaturated ketones in sediments from Lake Fryxell, East Antarctica. Organic Geochemistry, 41, 386–397.Google Scholar
  117. Jenkyns, H. C., Huybers-Schouten, L., Schouten, S., & Sinninghe Damsté, J. S. (2012). Middle Jurassic-Early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean. Climate of the Past, 8, 215–226.Google Scholar
  118. Johnson, T. C., Werne, J. P., Brown, E. T., Abbott, A., Berke, M., Steinman, B. A., et al. (2016). A progressively wetter climate in southern East Africa over the past 1.3 million years. Nature, 537, 220–224.Google Scholar
  119. Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., et al. (1997). Validity of the temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research, 102, 26471–26487.Google Scholar
  120. Karner, M., DeLong, E. F., & Karl, D. M. (2001). Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409, 507–510.Google Scholar
  121. Keil, R. G., Tsamakis, E., Fuh, C. B., Giddings, C., & Hedges, J. I. (1994). Mineralogical and textural controls on the organic composition of coastal marine sediments: hydrodynamic separation using SPLITT-fractionation. Geochimica et Cosmochimica Acta, 58, 879–893.Google Scholar
  122. Killops, S. & Killops, V. (2005). Introduction to organic geochemistry. Blackwell Publishing.Google Scholar
  123. Kim, J.-H., Schouten, S., Hopmans, E. C., Donner, B., & Sinninghe Damsté, J. S. (2008). Global sediment core-top calibration of the TEX86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta, 72, 1154.Google Scholar
  124. Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., et al. (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta, 74, 4639–4654.Google Scholar
  125. Kiriakoulakis, K., Marshall, J. D., & Wolff, G. A. (2000). Biomarkers in a Lower Jurassic concretion from Dorset (UK). Journal of the Geological Society, 157, 207–220.Google Scholar
  126. Konecky, B. L., Russell, J. M., Johnson, T. C., Brown, E. T., Berke, M. A., Werne, J. P., et al. (2011). Atmospheric circulation patterns during late Pleistocene climate changes at Lake Malawi, Africa. Earth and Planetary Science Letters, 312, 318–326.Google Scholar
  127. Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437, 543–546.Google Scholar
  128. Kornilova, O., & Rosell-Melé, A. (2003). Application of microwave-assisted extraction to the analysis of biomarker climate proxies in marine sediments. Organic Geochemistry, 34, 1517–1523.Google Scholar
  129. Kvenvolden, K. A. (2006). Organic geochemistry – A retrospective of its first 70 years. Organic Geochemistry, 37, 1–11.Google Scholar
  130. Langenheim, J. H. (1994). Higher-plant terpenoids – a phytocentric overview of their ecological roles. Journal of Chemical Ecology, 20, 1223–1280.Google Scholar
  131. Lengger, S. K., Hopmans, E. C., Sinninghe Damsté, J. S., & Schouten, S. (2012). Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments. Organic Geochemistry, 47, 34–40.Google Scholar
  132. Lichtfouse, É., Derenne, S., Mariotti, A., & Largeau, C. (1994). Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Organic Geochemistry, 22, 1023–1027.Google Scholar
  133. Lipp, J. S., Morono, Y., Inagaki, F., & Hinrichs, K.-U. (2008). Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454, 991–994.Google Scholar
  134. Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleooceanography, 20, PA1003.Google Scholar
  135. Liu, Z., Pagani, M., Zinniker, D., DeConto, R., Huber, M., Brinkhuis, H., et al. (2009). Global cooling during the Eocene-Oligocene climate transition. Science, 323, 1187–1190.Google Scholar
  136. Magill, C. R., Ashley, G. M., & Freeman, K. H. (2013a). Ecosystem variability and early human habitats in eastern Africa. Proceedings of the National Academy of Sciences, USA, 110, 1167–1174.Google Scholar
  137. Magill, C. R., Ashley, G. M., & Freeman, K. H. (2013b). Water, plants, and early human habitats in eastern Africa. Proceedings of the National Academy of Sciences, USA, 110, 1175–1180.Google Scholar
  138. Marshall, J. D., Brooks, J. R., & Lajtha, K. (2007). Sources of variation in the stable isotopic composition of plants. Stable Isotopes in Ecology and Environmental Science, 2, 22–60.Google Scholar
  139. Marynowski, L., Kurkiewicz, S., Rakociski, M., & Simoneit, B. R. T. (2011). Effects of weathering on organic matter: I. Changes in molecular composition of extractable organic compounds caused by paleoweathering of a Lower Carboniferous (Tournaisian) marine black shale. Chemical Geology, 285, 144–156.Google Scholar
  140. Marzi, R., Torkelson, B. E., & Olson, R. K. (1993). A revised carbon preference index. Organic Geochemistry, 20, 1303–1306.Google Scholar
  141. Matthews, D. E., & Hayes, J. M. (1978). Isotope-ratio-monitoring gas chromatography-mass spectrometry. Analytical Chemistry, 50, 1465–1473.Google Scholar
  142. Mayer, L. M. (1994). Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58, 1271–1284.Google Scholar
  143. Mayer, L. M. (1999). Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochimica et Cosmochimica Acta, 63, 207–215.Google Scholar
  144. Meier-Augenstein, W. (2004). In P. A. de Groot (Ed.), Handbook of stable isotope analytical techniques (pp. 154–176). Amsterdam: Elsevier.Google Scholar
  145. Metzger, P., Casadevall, E., Pouet, M. J., & Pouet, Y. (1985). Structures of some botryococcenes: branched hydrocarbons from the b-race of green alga Botryococcus braunii. Phytochemistry, 24, 2995–3002.Google Scholar
  146. Meyers, P. (1997a). Organic geochemical proxies for paleoceanographic, paleolimnologic and paleoclimatic processes. Organic Geochemistry, 27, 213–250.Google Scholar
  147. Meyers, P. A. (1997b). Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27, 213–250.Google Scholar
  148. Meyers, P. A. (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34, 261–289.Google Scholar
  149. Meyers, P. A., Bourbonniere, R. A., & Takeuchi, N. (1980). Hydrocarbons and fatty acids in two cores of Lake Huron sediments. Geochimica et Cosmochimica Acta, 44, 1215–1221.Google Scholar
  150. Monson, R. K. (1989). On the evolutionary pathways resulting in C4 photosynthesis and Crassulacean acid metabolism, 19, 57–110.Google Scholar
  151. O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567.Google Scholar
  152. Osmond, C. B., Allaway, W. G., Sutton, B. G., Troughton, J. H., Queiroz, O., Luttge, U., et al. (1973). Carbon isotope discrimination in photosynthesis of CAM plants. Nature, 246, 41–42.Google Scholar
  153. Otto, A., & Simoneit, B. R. T. (2001). Chemosystematics and diagenesis of terpenoids in fossil conifer species and sediment from the Eocene Zeitz formation, Saxony Germany. Geochimica et Cosmochimica Acta, 65, 3505–3527.Google Scholar
  154. Otto, A., & Simoneit, B. R. T. (2002). Biomarkers of Holocene buried conifer logs from Bella Coola and north Vancouver, British Columbia, Canada. Organic Geochemistry, 33, 1241–1251.Google Scholar
  155. Otto, A., & Simpson, M. J. (2005). Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry, 74, 377–409.Google Scholar
  156. Otto, A., & Wilde, (2001). Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers - A review. The Botanical Review, 67, 141–238.Google Scholar
  157. Pancost, R. D., & Boot, C. S. (2004). The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Marine Chemistry, 92, 239–261.Google Scholar
  158. Pastor, A., Vazquez, E., Ciscar, R., & de la Guardia, M. (1997). Efficiency of microwave-assisted extraction of hysrocarbons and pesticides from sediments. Analytica Chimica Acta, 344, 149–241.Google Scholar
  159. Pearcy, R. W., & Ehleringer, J. (1984). Comparative ecophysiology of C3 and C4 plants. Plant, Cell & Environment, 7, 1–13.Google Scholar
  160. Pearson, A., Huang, Z., Ingalls, A. E., Romanek, C. S., Wiegel, J., Freeman, K. H., et al. (2004). Nonmarine crenarchaeol in Nevada Hot Springs. Applied and Environmental Microbiology, 70, 5229–5237.Google Scholar
  161. Pearson, E. J., Juggins, S., & Farrimond, P. (2008). Distribution and significance of long chain alkenones as salinity and temperature indicators in Spanish saline lake sediments. Geochimica et Cosmochimica Acta, 72, 4035–4046.Google Scholar
  162. Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide: Biomarkers and isotopes in petroleum exploration and Earth history. New York: Cambridge University Press.Google Scholar
  163. Peterse, F., Kim, J.-H., Schouten, S., Kristensen, D. K., Koç, N., & Sinninghe Damsté, J. S. (2009). Constraints on the application of the MBT/CBT palaeothermometer at high latitude environments (Svalbard, Norway). Organic Geochemistry, 40, 692–699.Google Scholar
  164. Peterse, F., van der Meer, M., Schouten, S., Weijers, J., Fierer, N., Jackson, R. B., et al. (2012). Revised calibration of the MBT-CBT paleotemperature proxy based on branched tetraether membrane lipids in surface soils. Geochimica et Cosmochimica Acta, 96, 215–229.Google Scholar
  165. Petsch, S. T., Berner, R. A., & Eglinton, T. I. (2000). A field study of the chemical weathering of ancient sedimentary organic matter. Organic Geochemistry, 31, 475–487.Google Scholar
  166. Petsch, S. T., Eglinton, T. I., & Edwards, K. J. (2001a). 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science, 292, 1127–1131.Google Scholar
  167. Petsch, S. T., Smernik, R. J., Eglinton, T. I., & Oades, J. M. (2001b). A solid state 13C-NMR study of kerogen degradation during black shale weathering. Geochimica et Cosmochimica Acta, 65, 1867–1882.Google Scholar
  168. Pikuta, E. V., Hoover, R. B., & Tang, J. (2007). Microbial extremophiles at the limits of life. Critical Reviews in Microbiology, 33, 183–209.Google Scholar
  169. Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S.-J., Rhee, S.-K., Francis, C. A., et al. (2011). Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing Archaea enriched from marine and estuarine sediments. Applied and Environmental Microbiology, 77, 3468–3477.Google Scholar
  170. Pitcher, A., Hopmans, E. C., Schouten, S., & Sinninghe Damsté, J. S. (2009). Separation of core and intact polar archaeal tetraether lipids using silica columns: insights into living and fossil biomass contributions. Organic Geochemistry, 40, 12–19.Google Scholar
  171. Powers, L. A., Johnson, T. C., Werne, J. P., Castañeda, I., Hopmans, E. C., Sinninghe Damsté, J. S., & Schouten, S. (2005). Large temperature variability in the southern African tropics since the last glacial maximum. Geophysical Research Letters, 32, L08706.Google Scholar
  172. Powers, L. A., Werne, J. P., Johnson, T. C., Hopmans, E. C., Sinninghe Damsté, J. S., & Schouten, S. (2004). Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology, 32, 613–616.Google Scholar
  173. Powers, L. A., Werne, J. P., Van der Woude, A. J., Sinninghe Damsté, J. S., Hopmans, E. C., & Schouten, S. (2010). Applicability and calibration of the TEX86 paleothermometer in lakes. Organic Geochemistry, 41, 404–413.Google Scholar
  174. Poynter, J. G., & Eglinton, G. (1990). Molecular composition of three sediments from hole 717C: the Bengal Fan. In J. R. Cochran, D. A. V. Stow et al. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 116, 155–161.Google Scholar
  175. Prahl, F. G., Muehlhausen, L. A., & Zahnle, D. L. (1988). Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta, 52(9), 2303–2310.Google Scholar
  176. Prahl, F. G., Cowie, G. L., De Lange, G. J., & Sparrow, M. A. (2003). Selective organic matter preservation in “burn-down” turbidites on the Madeira Abyssal Plain. Paleoceanography, 18, 1052.Google Scholar
  177. Prahl, F. G., & Wakeham, S. G. (1987). Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature, 330, 367–369.Google Scholar
  178. Qin, W., Carlson, L. T., Armbrust, E. V., Devol, A. H., Moffett, J. W., Stahl, D. A., et al. (2015). Confounding effects of oxygen and temperature on the TEX86 signature of marine Thaumarchaeota. Proceedings of the National Academy of Sciences, USA, 112, 10979–10984.Google Scholar
  179. Rommerskirchen, F., Eglinton, G., Dupont, L., Güntner, U., Wenzel, C., & Rullkötter, J. (2003). A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochemistry Geophysics Geosystems, 4, 1101.Google Scholar
  180. Rommerskirchen, F., Plader, A., Eglinton, G., Chikaraishi, Y., & Rullkötter, J. (2006). Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes. Organic Geochemistry, 37, 1303–1332.Google Scholar
  181. Sachse, D., Billault, I., Bowen, G. J., Chikaraishi, Y., Dawson, T. E., Feakins, S. J., et al. (2012). Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annual Review of Earth and Planetary Sciences, 40, 221–249.Google Scholar
  182. Sachse, D., Kahmen, A., & Gleixner, G. (2009). Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acerpseudoplatanus). Organic Geochemistry, 40, 732–742.Google Scholar
  183. Sachse, D., Radke, J., & Gleixner, G. (2004). Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 68, 4877–4889.Google Scholar
  184. Sachse, D., Radke, J., & Gleixner, G. (2006). δD values of individual n-alkanes from terrestrial plants along a climatic gradient – Implications for the sedimentary biomarker record. Organic Geochemistry, 37, 469–483.Google Scholar
  185. Sage, R. F. (2004). The evolution of C4 photosynthesis. New Phytologist, 161, 341–370.Google Scholar
  186. Sage, R. F., Christin, P.-A., & Edwards, E. J. (2011). The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62, 3155–3169.Google Scholar
  187. Sage, R. F., Wedin, D. A., & Li, M. (1999). The biogeography of C4 photosynthesis: patterns and controlling factors. In R. F. Sage & R. K. Monson (Eds.), C4 plant biology (pp. 313–373). San Diego: Academic Press.Google Scholar
  188. Sageman, B. B., Murphy, A. E., Werne, J. P., Ver Straeten, C. A., Hollander, D. J., & Lyons, T. W. (2003). A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle Upper Devonian, Appalachian Basin. Chemical Geology, 195, 229–273.Google Scholar
  189. Sauer, P. E., Eglinton, T. I., Hayes, J. M., Schimmelmann, A., & Sessions, A. L. (2001). Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta, 65, 213–222.Google Scholar
  190. Schefuß, E., Jansen, J. H. F., & Sinninghe Damsté, J. S. (2005a). Tropical environmental changes at the mid-Pleistocene transition: insights from lipid biomarkers. In M. J. Head & P. L. Gibbard (Eds.), Early–middle Pleistocene transitions: The land–ocean evidence (pp. 35–63). Geological Society of London Special Publications.Google Scholar
  191. Schefuß, E., Schouten, S., & Schneider, R. R. (2005b). Central African hydrologic changes during the past 20,000 years. Nature, 437, 1003–1006.Google Scholar
  192. Schefuß, E., Schouten, S., Jansen, J. H. F., & Sinninghe Damsté, J. S. (2003). African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature, 422, 418–421.Google Scholar
  193. Schimmelmann, A., Lewan, M. D., & Wintsch, R. P. (1999). D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochimica et Cosmochimica Acta, 63, 3751–3766.Google Scholar
  194. Schouten, S., Hopmans, E. C., Schefuß, E., & Sinninghe Damsté, J. S. (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204, 265–274.Google Scholar
  195. Schouten, S., Hopmans, E. C., & Sinninghe Damsté, J. S. (2004). The effect of maturity and depositional redox conditions on archaeal tetraether lipid palaeothermometry. Organic Geochemistry, 35, 567–571.Google Scholar
  196. Schouten, S., Hopmans, E. C., & Sinninghe Damsté, J. S. (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry, 54, 19–61.Google Scholar
  197. Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., & Sinninghe Damsté, J. S. (2007a). Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Analytical Chemistry, 79, 2940–2944.Google Scholar
  198. Schouten, S., van der Meer, M. T. J., Hopmans, E. C., Rijpstra, W. I. C., Reysenbach, A.-L., Ward, D. M., et al. (2007b). Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of Yellowstone National Park. Applied and Environmental Microbiology, 73, 6181–6191.Google Scholar
  199. Schouten, S., Woltering, M., Rijpstra, W. I. C., Sluijs, A., Brinkhuis, H., & Sinninghe Damsté, J. S. (2007c). The Paleocene–Eocene carbon isotope excursion in higher plant organic matter: differential fractionation of angiosperms and conifers in the Arctic. Earth and Planetary Science Letters, 258, 581–592.Google Scholar
  200. Sessions, A. L. (2006). Isotope-ratio detection for gas chromatography. Journal of Separation Science, 29, 1946–1961.Google Scholar
  201. Sessions, A. L., Burgoyne, T. W., Schimmelmann, A., & Hayes, J. M. (1999). Fractionation of hydrogen isotopes in lipid biosynthesis. Organic Geochemistry, 30, 1193–1200.Google Scholar
  202. Shepherd, T., & Griffiths, D. W. (2006). The effects of stress on plant cuticular waxes. New Phytologist, 171, 469–499.Google Scholar
  203. Simoneit, B. R. T. (1977). Biogenic lipids in particulates from the lower atmosphere over the eastern Atlantic. Nature, 267, 682–685.Google Scholar
  204. Sinninghe Damsté, J. S., Hopmans, E. C., Pancost, R. D., Schouten, S., & Geenevasen, J. A. J. (2000). Newly discovered non-isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments. Chemical Communications, 2000, 1683–1684.Google Scholar
  205. Sinninghe Damsté, J. S., Hopmans, E. C., Schouten, S., van Duin, A. C. T., & Geenevasen, J. A. J. (2002a). Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic Crenarchaeota. Journal of Lipid Research, 43, 1641–1651.Google Scholar
  206. Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S., & Verschuren, D. (2009). Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and branched tetraether lipids in lacustrine settings. Geochimica et Cosmochimica Acta, 73, 4232–4249.Google Scholar
  207. Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S., & Verschuren, D. (2008). Altitudinal shifts in the branched tetraether lipid distribution in soil from Mt. Kilimanjaro (Tanzania): implications for the MBT/CGT continental palaeothermometer. Organic Geochemistry, 39, 1072–1076.Google Scholar
  208. Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S., & Verschuren, D. (2012). Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quaternary Science Reviews, 50, 43–54.Google Scholar
  209. Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Weijers, J. W. H., Foesel, B. U., Overmann, J., et al. (2011a). 13,16-Dimethyl octacosanedioic acid (iso-diabolic acid): a common membrane-spanning lipid of Acidobacteria subdivisions 1 and 3. Applied and Environmental Microbiology, 77, 4147–4154.Google Scholar
  210. Sinninghe Damsté, J. S., Rijpstra, W. I. C., & Reichart, G.-J. (2002b). The influence of oxic degradation on the sedimentary biomarker record II. Evidence from Arabian Sea sediments. Geochimica et Cosmochimica Acta, 66, 2737–2754.Google Scholar
  211. Sinninghe Damsté, J. S., & Schouten, S. (2006). Biological markers for anoxia in the photic zone of the water column. In J. Volkman (Ed.), Marine organic matter: Biomarkers, isotopes and DNA (Vol. 2N, pp. 127–163). Berlin Heidelberg: Springer.Google Scholar
  212. Sinninghe Damsté, J. S., Verschuren, D., Ossebaar, J., Blokker, J., van Houten, R., van der Meer, M. T. J., et al. (2011b). A 25,000-year record of climate-induced changes in lowland vegetation of eastern equatorial Africa revealed by the stable carbon-isotopic composition of fossil plant leaf waxes. Earth and Planetary Science Letters, 302, 236–246.Google Scholar
  213. Sluijs, A., Bijl, P. K., Schouten, S., Röhl, U., Reichart, G. J., & Brinkhuis, H. (2011). Southern Ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum. Climate of the Past, 7, 47–61.Google Scholar
  214. Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J. S., et al. (2006). Subtropical Arctic Ocean temperatures during the Palaeocene-Eocene thermal maximum. Nature, 441, 610–613.Google Scholar
  215. Smith, F. A., & Freeman, K. H. (2006). Influence of physiology and climate on δD of leaf wax n-alkanes from C3 and C4 grasses. Geochimica et Cosmochimica Acta, 70, 1172–1187.Google Scholar
  216. Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., Spieck, E., et al. (2010). Distinct gene set in two different lineages of ammonia-oxidizing Archaea supports the phylum Thaumarchaeota. Trends in Microbiology, 18, 331–340.Google Scholar
  217. Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., & Hinrichs, K.-U. (2004). Intact polar membrane lipids in prokaryotes and sediments decipered by high performance liquid chromatography/electrospray ionization multistage mass spectrometry—New biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18, 617–628.Google Scholar
  218. Summons, R. E., Bird, L. R., Gillespie, A. L., Pruss, S. B., Roberts, M., & Sessions, A. L. (2013). Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora. Geobiology, 11, 420–436.Google Scholar
  219. Sun, Q., Chu, G., Liu, M., Xie, M., Li, S., Ling, Y., et al. (2011). Distributions and temperature dependence of branched glycerol dialkyl glycerol tetraethers in recent lacustrine sediments from China and Nepal. Journal of Geophysical Research: Biogeosciences, 116, G01008.Google Scholar
  220. Talbot, H. M., & Farrimond, P. (2007). Bacterial populations recorded in diverse sedimentary biohopanoid distributions. Organic Geochemistry, 38, 1212–1225.Google Scholar
  221. Tegelaar, E., Matthezing, R., Jansen, J., Horsfield, B., & DeLeeuw, J. (1989a). Possible origin of normal-alkanes in high-wax crude oils. Nature, 342, 529–531.Google Scholar
  222. Tegelaar, E. W., de Leeuw, J. W., Derenne, S., & Largeau, C. (1989b). A reappraisal of kerogen formation. Geochimica et Cosmochimica Acta, 53, 3103–3106.Google Scholar
  223. Tierney, J. E., & Russell, J. M. (2009). Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Organic Geochemistry, 40, 1032–1036.Google Scholar
  224. Tierney, J. E., Mayes, M. T., Meyer, N., Johnson, C., Swarzenski, P. W., Cohen, A. S., et al. (2010a). Late twentieth-century warming in Lake Tanganiyika unprecedented since AD 500. Nature Geoscience, 3, 422–425.Google Scholar
  225. Tierney, J. E., Russell, J. M., Eggermont, H., Hopmans, E. C., Verschuren, D., & Sinninghe Damsté, J. S. (2010b). Environmental controls on branched tetraether lipid distributions in tropical East African lake sediments. Geochimica et Cosmochimica Acta, 74, 4902–4918.Google Scholar
  226. Tierney, J. E., Russell, J. M., Huang, Y., Sinninghe Damsté, J. S., Hopmans, E. C., & Cohen, A. S. (2008). Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science, 322, 252–255.Google Scholar
  227. Tierney, J. E., & Tingley, M. P. (2014). A Bayesian, spatially-varying calibration model for the TEX86 proxy. Geochimica et Cosmochimica Acta, 127, 83–106.Google Scholar
  228. Tierney, J. E., & Tingley, M. P. (2015). A TEX86 surface sediment database and extended Bayesian calibration. Scientific Data, 2, 150029.Google Scholar
  229. Tipple, B. J., Berke, M. A., Doman, C. E., Khachaturyan, S., & Ehleringer, J. R. (2013). Leaf-wax n-alkanes record the plant–water environment at leaf flush. Proceedings of the National Academy of Sciences, USA, 110, 2659–2664.Google Scholar
  230. Tipple, B. J., Meyers, S. R., & Pagani, M. (2010). Carbon isotope ratio of Cenozoic CO2: a comparative evaluation of available geochemical proxies. Paleoceanography, 25, PA3202.Google Scholar
  231. Tipple, B. J., & Pagani, M. (2007). The early origins of terrestrial C4 photosynthesis. Annual Review of Earth and Planetary Sciences, 35, 435–461.Google Scholar
  232. Tipple, B. J., & Pagani, M. (2010). A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: implications for C4 grasslands and hydrologic cycle dynamics. Earth and Planetary Science Letters, 299, 250–262.Google Scholar
  233. Toney, J. L., Huang, Y. S., Fritz, S. C., Baker, P. A., Grimm, E., & Nyren, P. (2010). Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochimica et Cosmochimica Acta, 74, 1563–1578.Google Scholar
  234. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54, 2298–2314.Google Scholar
  235. Treibs, A. (1936). Chlorophyll- und Häminderivate in organischen Mineralstoffen. Angewandte Chemie, 49, 682–686.Google Scholar
  236. Uno, K. T., Polissar, P. J., Jackson, K. E., & deMenocal, P. B. (2016). Neogene biomarker record of vegetation change in eastern Africa. Proceedings of the National Academy of Sciences, USA, 113, 6355–6363.Google Scholar
  237. van Aarssen, B. G. K., Alexander, R., & Kagi, R. I. (2000). Higher plant biomarkers reflect palaeovegetation changes during Jurassic times. Geochimica et Cosmochimica Acta, 64, 1417–1424.Google Scholar
  238. Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38, 719–833.Google Scholar
  239. Vogts, A., Moossen, H., Rommerskirchen, F., & Rullkötter, J. (2009). Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Organic Geochemistry, 40, 1037–1054.Google Scholar
  240. Vogts, A., Schefuß, E., Badewien, T., & Rullkötter, J. (2012). n-Alkane parameters from a deep sea sediment transect off southwest Africa reflect continental vegetation and climate conditions. Organic Geochemistry, 47, 109–119.Google Scholar
  241. Volkman, J. K., Eglinton, G., Corner, E. D. S., & Forsberg, T. E. (1980). Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi. Phytochemistry, 19, 619–2622.Google Scholar
  242. Wakeham, S. G., Lee, C., Hedges, J. I., Hernes, P. J., & Peterson, M. J. (1997). Molecular indicators of diagenetic status in marine organic matter. Geochimica et Cosmochimica Acta, 61, 5363–5369.Google Scholar
  243. Wakeham, S. G., & Pease, T. K. (1992). Lipid analysis in marine particles and sediment samples. Savannah: Skidaway Institute of Oceanography.Google Scholar
  244. Weber, Y., De Jonge, C., Rijpstra, W. I. C., Hopmans, E. C., Stadnitskaia, A., Schubert, C. J., et al. (2015). Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: evidence for lacustrine branched GDGT production. Geochimica et Cosmochimica Acta, 154, 118–129.Google Scholar
  245. Weijers, J. W. H., Schouten, S., Donker, v. d., Jurgen C., Hopmans, E. C., & Sinninghe Damsté, J. S. (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta, 71, 703–713.Google Scholar
  246. Weijers, J. W. H., Schouten, S., Hopmans, E. C., Geenevasen, J. A. J., David, O. R. P., Coleman, J. M., et al. (2006a). Membrane lipids of mesophilica anaerobic bacteria thriving in peats have typical archaeal traits. Environmental Microbiology, 8, 648–657.Google Scholar
  247. Weijers, J. W. H., Schouten, S., Spaargaren, O. C., & Damste, J. S. S. (2006b). Occurrence and distribution of tetraether membrane lipids in soils: implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, 37, 1680–1693.Google Scholar
  248. White, J. W. C., Cook, E. R., Lawrence, J. R., & Wallace, S. B. (1985). The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochimica et Cosmochimica Acta, 49, 237–246.Google Scholar
  249. Williams, D. G., & Ehleringer, J. R. (2000). Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands. Ecological Monographs, 70, 517–537.Google Scholar
  250. Wing, S. L., Harrington, G. J., Smith, F. A., Bloch, J. I., Boyer, D. M., & Freeman, K. H. (2005). Transient floral change and rapid global warming at the Paleocene-Eocene boundary. Science, 310, 993–996.Google Scholar
  251. Woltering, M., Johnson, T. C., Werne, J. P., Schouten, S., & Sinninghe Damsté, J. S. (2011). Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeography, Palaeoclimatology, Palaeoecology, 303, 93–102.Google Scholar
  252. Woltering, M., Werne, J. P., Kish, J. L., Hicks, R., Sinninghe Damsté, J. S., & Schouten, S. (2012). Vertical and temporal variability in concentration and distribution of thaumarchaeotal tetraether lipids in Lake Superior and the implications for the application of the TEX86 temperature proxy. Geochimica et Cosmochimica Acta, 87, 136–153.Google Scholar
  253. Woltering, M. L. (2011). Thaumarchaeota distribution in the water columns of Lakes Superior and Malawi: Implications for the TEX86 lacustrine temperature proxy. Ph.D. Dissertation, University of Minnesota.Google Scholar
  254. Wright, V. P., & Vanstone, S. D. (1991). Assessing the carbon dioxide content of ancient atmospheres using paleocretes: theoretical and empirical constraints. Journal of the Geological Society, 148, 945–947.Google Scholar
  255. Wuchter, C., Abbas, B., Coolen, M. J. L., Herfort, L., van Bleijswijk, J., Timmers, P., et al. (2006). Archaeal nitrification in the ocean. Proceedings of the National Academy of Sciences, USA, 103, 12317–12322.Google Scholar
  256. Wuchter, C., Schouten, S., Wakeham, S. G., & Sinninghe Damsté, J. S. (2005). Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: implications for TEX86 paleothermometry. Paleoceanography, 20, PA3013.Google Scholar
  257. Yang, H., Lü, X., Ding, W., Lei, Y., Dang, X., & Xie, S. (2015). The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT′) in soils from an altitudinal transect at Mount Shennongjia. Organic Geochemistry, 82, 42–53.Google Scholar
  258. Yang, H., Pagani, M., Briggs, D. E. G., Equiza, M. A., Jagels, R., et al. (2009). Carbon and hydrogen isotope fractionation under continuous light: implications for paleoenvironmental interpretations of the High Arctic during Paleogene warming. Oecologia, 160, 461–470.Google Scholar
  259. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.Google Scholar
  260. Zachos, J. C., Schouten, S., Bohaty, S., Quattlebaum, T., Sluijs, A., Brinkhuis, H., et al. (2006). Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology, 34, 737–740.Google Scholar
  261. Zink, K.-G., Leythaeuser, D., Melkonian, M., & Schwark, L. (2001). Temperature dependency of long-chain alkenone distributions in recent to fossil limnic sediments and in lake waters. Geochimica et Cosmochimica Acta, 65, 253–265.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameUSA

Personalised recommendations