Advertisement

Isotope Ecology from Biominerals

  • Pennilyn HigginsEmail author
Chapter
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)

Abstract

Stable isotopes of carbon and oxygen can be used to make inferences about ancient climates and habitats. Biological hard tissues, particularly the biominerals of bioapatite, calcite, and aragonite are excellent archives of these isotopes and can be used to explore environments of Earth’s deep past.

Keywords

Carbon Oxygen Bioapatite Calcite Aragonite Mass spectrometry Stable isotope 

References

  1. Abell, P. I., & Hoelzmann, P. (2000). Holocene palaeoclimates in northwestern Sudan: stable isotope studies on molluscs. Global and Planetary Change, 26, 1–12.Google Scholar
  2. Ambrose, S. H., & Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In J. Lambert & G. Grupe (Eds.), Prehistoric human bone, archaeology at the molecular level (pp. 1–31). Berlin: Springer.Google Scholar
  3. Andres, M. S., Sumner, D. Y., Reid, R. P., & Swart, P. K. (2006). Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology, 34, 973–976.Google Scholar
  4. Andrews, J. E., Riding, R., & Dennis, P. F. (1997). The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates in Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 171–189.Google Scholar
  5. Aston, F. W. (1921). Isotopes and atomic weights. Nature, 107, 334–338.Google Scholar
  6. Balakrishnan, M., Yapp, C. J., Theler, J. L., Carter, B. J., & Wyckoff, D. G. (2005). Environmental significance of 13C/12C and 18O/16O ratios of modern land-snail shells from the southern great plains of North America. Quaternary Research, 63, 15–30.Google Scholar
  7. Balasse, M. (2002). Reconstructing dietary and environmental history form enamel isotopic analysis: time resolution of intra-tooth sequential sampling. International Journal of Osteoarcheology, 12, 155–165.Google Scholar
  8. Bender, M. M. (1971). Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry, 10, 1239–1244.Google Scholar
  9. Berke, M. A. (2018). Reconstructing terrestrial paleoenvironments using sedimentary organic biomarkers. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 121–149). Cham: Springer.Google Scholar
  10. Bershaw, J., Garzione, C. N., Higgins, P., MacFadden, B. J., Anaya, F., & Alvarenga, H. (2010). Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289, 530–538.Google Scholar
  11. Blumenthal, S. A., Cerling, T. E., Chritz, K. L., Bromage, T. G., Kozdon, R., & Valley, J. W. (2014). Stable isotope time-series in mammalian teeth: in situ δ18O from the innermost enamel layer. Geochimica et Cosmochimica Acta, 124, 223–236.Google Scholar
  12. Blumenthal, S. A., Levin, N. E., Brown, F. H., Brugal, J.-P., Chritz, K. L., Harris, J. M., et al. (2017). Aridity and hominin environments. Proceedings of the National Academy of Sciences, USA, 114, 7331–7336.Google Scholar
  13. Bowen, G. J., & Wilkinson, B. (2002). Spatial distribution of δ18O in meteoric precipitation. Geology, 30, 315–318.Google Scholar
  14. Bryant, J. D., Koch, P. L., Froelich, P. N., Showers, W. J., & Genna, B. J. (1996a). Oxygen isotope partitioning between phosphate and carbonate in mammalian apatites. Geochimica et Cosmochimica Acta, 60, 5145–5148.Google Scholar
  15. Bryant, J. D., Froelich, P. N., Showers, W. J., & Genna, B. J. (1996b). Biological and climatic signals in the oxygen isotopic composition of Eocene-Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 75–89.Google Scholar
  16. Bryson, R. A., & DeWall, K. M. (2007). An introduction to the archaeoclimatology macrophysical climate model. In R. A. Bryson & K. M. DeWall (Eds.), A Paleoclimatology workbook: High resolution, site-specific macrophysical climate modeling (pp. 3–10). The Mammoth Site of Hot Springs, SD, Inc.Google Scholar
  17. Budzikiewicz, H., & Grigsby, R. D. (2006). Mass spectrometry and isotopes: a century of research and discussion. Mass Spectrometry Reviews, 25, 146–157.Google Scholar
  18. Carroll, M., Romanek, C., & Paddock, L. (2006). The relationship between the hydrogen and oxygen isotopes of freshwater bivalve shells and their home streams. Chemical Geology, 234, 211–222.Google Scholar
  19. Cerling, T. E. (1984). The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth and Planetary Science Letters, 71, 229–240.Google Scholar
  20. Cerling, T. E., Quade, J., Wang, Y., & Bowman, J. R. (1989). Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 341, 138–139.Google Scholar
  21. Cerling, T. E., & Harris, J. M. (1999). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia, 120, 347–363.Google Scholar
  22. Cerling, T. E., & Sharp, Z. D. (1996). Stable carbon and oxygen isotope analysis of fossil tooth enamel using laser ablation. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 173–186.Google Scholar
  23. Chen, H., Winderlich, J., Gerbig, C., Rella, C. W., Crosson, E. R., Van Pelt, A. D., et al. (2010). High-accuracy continuous airborne measurements of greenhouse gasses (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique. Atmospheric Measurement Techniques, 3, 375–386.Google Scholar
  24. Coplen, T. B. (1994). Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry, 66, 273–276.Google Scholar
  25. Coplen, T. B., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B., et al. (2006). New guidelines for δ13C measurements. Analytical Chemistry, 78, 2439–2441.Google Scholar
  26. Craig, H. (1957). Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochemica et Cosmochimica Acta, 12, 133–149.Google Scholar
  27. Craig, H., & Gordon, L. I. (1965). Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In E. Tongiogi (Ed.), Stable isotopes in oceanographic studies and paleotemperatures (pp. 9–130). Pisa: CNR-Laboratorio di Geologia Nucleare.Google Scholar
  28. Crosson, E. R. (2008). A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Applied Physics B, 92, 403–408.Google Scholar
  29. Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16, 436–468.Google Scholar
  30. Dempster, A. J. (1918). A new method of positive ray analysis. Physics Reviews (Series 6), 11, 316–325.Google Scholar
  31. DeNiro, M. J., & Epstein, S. (1978). Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta, 45, 341–351.Google Scholar
  32. Dettman, D. L., Reische, A. K., & Lohmann, K. C. (1999). Controls on the stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta, 63, 1049–1057.Google Scholar
  33. Dworkin, S. I., Nordt, L., & Atchley, S. (2005). Determining terrestrial paleotemperatures using the oxygen isotopic composition of pedogenic carbonate. Earth and Planetary Science Letters, 237, 56–68.Google Scholar
  34. Eagle, R. A., Schauble, E. A., Tripati, A. K., Tutken, T., Hulbert, R. C., & Eiler, J. M. (2010). Body temperatures of modern and extinct vertebrates from 13C-18O bond abundances in bioapatite. Proceedings of the National Academy of Sciences, USA, 107, 10377–10382.Google Scholar
  35. Eagle, R. A., Tutken, T., Marton, T. S., Tripati, A. K., Fricke, H. C., Connely, M., et al. (2011). Dinosaur body temperatures determined from isotopic (13C-18O) ordering in fossil biominerals. Science, 333, 443–445.Google Scholar
  36. Eberle, J. J., Fricke, H. C., Humphrey, J. D., Hackett, L., Newbrey, M. G., & Hutchison, J. H. (2010). Seasonal variability in Arctic temperatures during early Eocene time. Earth and Planetary Science Letters, 296, 481–486.Google Scholar
  37. Eiler, J. M. (2007). “Clumped-isotope” geochemistry – the study of naturally-occurring, multiply-substituted isotopologues. Earth and Planetary Science Letters, 262, 309–327.Google Scholar
  38. Emiliani, C., & Edwards, G. (1953). Tertiary ocean bottom temperatures. Nature, 4359, 887–888.Google Scholar
  39. Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Reviews of Plant Physiology and Plant Molecular Biology, 40, 503–537.Google Scholar
  40. Feranec, R. S., & MacFadden, B. J. (2006). Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology, 32, 191–205.Google Scholar
  41. Feranec, R. S., Hadly, E. A., & Paytan, A. (2009). Stable isotopes reveal seasonal competition for resources between late Pleistocene bison (Bison) and horse (Equus) from Rancho La Brea, southern California. Palaeogeography, Palaeoclimatology, Palaeoecology, 271, 153–160.Google Scholar
  42. Fricke, H. C., & O’Neil, J. R. (1996). Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 91–99.Google Scholar
  43. Garzione, C. N., Molnar, P., Libarkin, J. C., & MacFadden, B. J. (2006). Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth and Planetary Science Letters, 241, 543–556.Google Scholar
  44. Geist, J., Auerswald, K., & Boom, A. (2005). Stable carbon isotopes in freshwater mussel shells: environmental record or marker for metabolic activity? Geochimica et Cosmochimica Acta, 69, 3545–3554.Google Scholar
  45. Ghosh, P., Eiler, J., Campana, S. E., & Feeney, R. F. (2007). Calibration of the carbonate ‘clumped isotope’ paleothermometer for otoliths. Geochimica et Cosmochimica Acta, 71, 2736–2744.Google Scholar
  46. Ghosh, P., Garzione, C. N., & Eiler, J. M. (2006). Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311, 511–515.Google Scholar
  47. Gillikin, D. P., Lorrain, A., Meng, L., & Dehairs, F. (2007). A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta, 71, 2936–2946.Google Scholar
  48. Goodwin, D. H., Schone, B. R., & Dettman, D. L. (2003). Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: models and observations. PALAIOS, 18, 110–125.Google Scholar
  49. Grimes, S. T., Collinson, M. E., Hooker, J. J., & Mattey, D. P. (2008). Is small beautiful? A review of the advantages and limitations of using small mammal teeth and the direct laser fluorination analysis technique in the isotope reconstruction of past continental climate change. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 39–50.Google Scholar
  50. Higgins, P., & MacFadden, B. J. (2004). “Amount effect” recorded in oxygen isotopes of Late Glacial horse (Equus) and bison (Bison) teeth from the Sonoran and Chihuahuan deserts, southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 337–353.Google Scholar
  51. Higgins, P., & MacFadden, B. J. (2009). Seasonal and geographic climate variabilities during the Last Glacial Maximum in North America: applying isotopic analysis and macrophysical climate models. Palaeogeography, Palaeoclimatology, Palaeoecology, 283, 15–27.Google Scholar
  52. Hoppe, K. A., Stover, S. M., Pascoe, J. R., & Amundson, R. (2004). Tooth enamel biomineralization in extant horses: implications for isotopic microsampling. Palaeogeography, Palaeoclimatology, Palaeoecology, 206, 355–365.Google Scholar
  53. Hynek, S. A., Passey, B. H., Prado, J. L., Brown, F. H., Cerling, T. E., & Quade, J. (2012). Small mammal carbon isotope ecology across the Miocene-Pliocene boundary, northwestern Argentina. Earth and Planetary Science Letters, 321–322, 177–188.Google Scholar
  54. Iacumin, P., Bocherens, H., Mariotti, A., & Longinelli, A. (1996). Oxygen isotope analyses of co-existing carbonate and phosphate in biogeneic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters, 142, 1–6.Google Scholar
  55. IAEA/WMO, (2001). Global Network of Isotopes in Precipitation. The GNIP Database.Google Scholar
  56. Ivany, L. C., Wilkinson, B. H., Lohmann, K. C., Johnson, E. R., McElroy, B. J., & Cohen, G. J. (2004). Intra-annual isotopic variation in Venericardia bivalves: implications for the early Eocene termperatue, seasonality, and salinity on the U.S. gulf coast. Journal of Sedimentary Research, 74, 7–19.Google Scholar
  57. Jacques, L., Ogle, N., Moussa, I., Kalin, R., Vignaud, P., Brunet, M., et al. (2008). Implications of diagenesis for the isotopic analysis of Upper Miocene large mammalian herbivore tooth enamel from Chad. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 200–210.Google Scholar
  58. Jones, D. S., & Quitmyer, I. R. (1996). Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. PALAIOS, 11, 340–346.Google Scholar
  59. Jones, R., & Burge, J. (1998). The successful application of radiological survey instruments to map bone locations and aid excavation at a Lower Cretaceous, Cedar Mountain Formation, dinosaur quarry. In S. G. Lucas, J. I. Kirkland & J. W. Estep (Eds.) Lower and middle cretaceous terrestrial ecosystems (pp. 310–329). New Mexico Museum of Natural History and Science Buletin No. 14.Google Scholar
  60. Keenan, S. W., & Engel, A. S. (2017). Early diagenesis and recrystallization of bone. Geochimica et Cosmochimica Acta, 96, 209–223.Google Scholar
  61. Kimura, Y., Jacobs, L. L., Cerling, T. E., Uno, K. T., Ferguson, K. M., Flynn, L. J., et al. (2013). Fossil mice and rats show isotopic evidence of niche partitioning and change in dental ecomorphology related to dietary shift in late miocene of Pakistan. PLoS ONE, 8(8), e69308.CrossRefGoogle Scholar
  62. Kohn, M. J., Schoeninger, M. J., & Valley, J. W. (1998). Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology, 152, 97–112.Google Scholar
  63. Labs-Hochstein, J., & MacFadden, B. J. (2006). Quantification of diagenesis in Cenozoic sharks: elemental and mineralogical changes. Geochimica et Cosmochimica Acta, 70, 4921–4932.Google Scholar
  64. Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831.Google Scholar
  65. Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., & Ehleringer, J. R. (2006). A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences, USA, 103, 11201–11205.Google Scholar
  66. Lindars, E. S., Grimes, S. T., Mattey, D. P., Collinson, M. E., Hooker, J. J., & Jones, T. P. (2001). Phosphate δ18O determination of modern rodent teeth by direct laser fluorination: an appraisal of methodology and potential application to palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 65, 2535–2548.Google Scholar
  67. MacFadden, B. J., & Higgins, P. (2004). Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama. Oecologia, 140, 169–182.Google Scholar
  68. MacFadden, B. J., Higgins, P., Clementz, M. T., & Jones, D. S. (2004). Diets, habitat preferences, and niche differentiation of Cenozoic sirenians from Florida: evidence from stable isotopes. Paleobiology, 20, 297–324.Google Scholar
  69. Martin, C., Bentaleb, I., Kaandorp, R., Iacumin, P., & Chatri, K. (2008). Intra-tooth study of modern rhinoceros enamel δ18O: is the difference between phosphate and carbonate δ18O a sound diagenetic test? Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 183–189.Google Scholar
  70. McConnaughey, T. A., & Gillikin, D. P. (2008). Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28, 287–299.Google Scholar
  71. McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 18, 849–857.Google Scholar
  72. Mortimer, R. J. G., & Coleman, M. L. (1997). Microbial influence on the ocysgne isotopic composition of diagenetic siderite. Geochimica et Cosmochimica Acta, 61, 1705–1711.Google Scholar
  73. O’Leary, M. H. (1981). Carbon isotope fractionation in plants. Phytochemistry, 20, 553–567.Google Scholar
  74. Passey, B. H., & Cerling, T. E. (2002). Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta, 66, 3225–3234.Google Scholar
  75. Passey, B. H., Robinson, T. F., Ayliffe, L. K., Cerling, T. E., Sponheimer, M., Dearing, M. D., et al. (2005). Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science, 32, 1459–1470.Google Scholar
  76. Passey, B. H., & Cerling, T. E. (2006). In situ stable isotope analysis (δ13C, δ18O) of very small teeth using laser ablation GC/IRMS. Chemical Geology, 235, 238–249.Google Scholar
  77. Passey, B. H., Hu, H., Ji, H., Montanari, S., Li, S., Henkes, G. A., et al. (2014). Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochimica et Cosmochimica Acta, 141, 1–25.Google Scholar
  78. Pellegrini, M., & Snoeck, C. (2015). Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2 – Impact on carbon and oxygen isotope compositions. Chemical Geology, 420, 88–96.Google Scholar
  79. Petersen, P. E., & Lennon, M. A. (2004). Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community Dentistry and Oral Epidemiology, 32, 319–321.Google Scholar
  80. Prendergast, A. L., Stevens, R. E., Barker, G., & O’Connell, T. C. (2015). Oxygen isotope signatures from land snail (Helix melanostoma) shells and body fluid: proxies for reconstructing Mediterranean and North African rainfall. Chemical Geology, 409, 87–98.Google Scholar
  81. Romanek, C. S., Zhang, C. L., Li, Y., Horita, J., Vali, H., Cole, D. R., et al. (2003). Carbon and hydrogen isotope fractionations associated with dissimilatory iron-reducing bacteria. Chemical Geology, 195, 5–16.Google Scholar
  82. Rozanski, K., Araguas-Araguas, L., & Gonfiantini, R. (1993). Isotopic Patterns in Modern Global Precipitation. In P. K. Swart, K. C. Lohmann, J. McKenzie & S. Savin (Eds.) Climate change in continental isotopic records (pp. 1–36). AGU Geophysical Monograph 78.Google Scholar
  83. Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Research, 106, 117–134.Google Scholar
  84. Sharp, Z. D., & Cerling, T. E. (1996). A laser GC-IRMS technique for in situ stable isotope analyses of carbonates and phosphates. Geochimica et Cosmochimica Acta, 60, 2909–2916.Google Scholar
  85. Smith, B. N., & Epstein, S. (1971). Two Categories of 13C/12C ratios for higher plants. Plant Physiology, 47, 380–384.Google Scholar
  86. Snoeck, C., & Pellegrini, M. (2015). Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1 – Impact on structure and chemical composition. Chemical Geology, 417, 394–403.Google Scholar
  87. Sponheimer, M., & Lee-Thorp, J. A. (1999). Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science, 26, 723–728.Google Scholar
  88. Teeri, J. A., & Stowe, L. G. (1976). Climatic patterns and the distribution of C4 grasses in North America. Oecologia, 23, 1–12.Google Scholar
  89. Thomson, J. J. (1897). Cathode rays. Philosophical Magazine (Series 5), 44, 293–316.Google Scholar
  90. Thomson, J. J. (1911). Rays of positive electricity. Philosophical Magazine (Series 2), 21, 225–249.Google Scholar
  91. Thomson, J. J. (1913). Rays of positive electricity. Proceedings of the Royal Society of London (Series A), 89, 1–20.Google Scholar
  92. Tütken, T., Vennemann, T. W., & Pfretzschner, H.-U. (2008). Early diagenesis of bone and tooth apatite in fluvial and marine settings: constraints from combined oxygen isotope, nitrogen and REE analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 266, 254–268.Google Scholar
  93. van der Merwe, N. J., & Medina, E. (1991). The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science, 18, 249–259.Google Scholar
  94. Von Grafenstein, U., Erlernkeuser, H., & Trimborn, P. (1999). Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 148, 133–152.Google Scholar
  95. Wahl, E. H., Fidric, B., Rella, C. W., Koulikov, S., Kharlomov, B., Tan, S., et al. (2006). Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide. Isotopes in Environmental and Health Studies, 42, 21–35.Google Scholar
  96. Wien, W. (1898). Untersuchungen über die electrische Entladung in verdünnten Gasen. Annals of Physical Chemistry (neue Folge), 65, 440–452.Google Scholar
  97. Yanes, Y., Izeta, A. D., Cattaneo, R., Costa, T., & Gordillo, S. (2014). Holocene (~4.5–1.7 cal. kyr BP) paleoenvironmental conditions in central Argentina inferred from entire-shell and intra-shell stable isotope composition of terrestrial gastropods. The Holocene, 24, 1193–1205.Google Scholar
  98. Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.Google Scholar
  99. Zazzo, A., Balasse, M., & Patterson, W. P. (2005). High-resolution δ13C intratooth profiles in bovine enamel: implications for mineralization pattern and isotopic attenuation. Geochimica et Cosmochimica Acta, 69, 3632–3642.Google Scholar
  100. Zhou, J., Poulsen, C. J., Pollard, D., & White, T. S. (2008). Simulation of modern and middle Cretaceous marine δ18O with an ocean-atmosphere general circulation model. Paleoceanography, 23, PA3223.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of RochesterRochesterUSA

Personalised recommendations