Permanent Record: The Use of Dental and Bone Microstructure to Assess Life History Evolution and Ecology

  • Russell HoggEmail author
Part of the Vertebrate Paleobiology and Paleoanthropology book series (VERT)


In order to study the impact of ecology on life history evolution, paleobiologists have begun to take a cue from dendrochronology, and have increasingly been making use of microstructural growth records available within mineralized tissues: dental enamel, dentin, and bone. These tissues contain regular growth increments whose periodicities range from 24-hour (circadian), to 2-week, to seasonal and annual cycles, and which have allowed us to generate absolute chronologies of growth in teeth and bone. The study of these increments is known as odontochronology with respect to teeth, and skeletochronology with respect to bone. These two related fields allow us to directly quantify how species’ growth patterns are correlated with a number of ecological factors over geological time. Moreover, because growth increments record individual stress events that occurred within individual animals’ lifetimes, they allow us to observe important ecological pressures that occurred on shorter timescales as well.


Growth increments Odontochronology Skeletochronology Biorhythm Cross-striation Stria of Retzius Von Ebner’s line Andresen line Lamella LAG 


  1. Allen, M. J. (2008). Biomechanical markers of bone metabolism in animals: uses and limitations. Veterinary Clinical Pathology, 32, 101–113.Google Scholar
  2. Asper, H. (1916). Uber die “Braune Retzius” sche Parallelstreifung im Schmelz der Menschlichen Zahne. Schweiz. Vierteljahrschrift Zahnheilk, 26, 277–314.Google Scholar
  3. Beaumont, J., Montgomery, J., Buckberry, J., & Jay, M. (2015). Infant mortality and isotopic complexity: new approaches to stress, maternal health, and weaning. American Journal of Physical Anthropology, 157, 441–457.Google Scholar
  4. Beynon, A. D., & Dean, M. C. (1987). Crown-formation time of a fossil hominid premolar tooth. Archives of Oral Biology, 32, 773–780.Google Scholar
  5. Beynon, A. D., & Wood, B. A. (1986). Variations in enamel thickness and structure in East African hominids. American Journal of Physical Anthropology, 70, 177–195.Google Scholar
  6. Beynon, A. D., Dean, M. C., & Reid, D. J. (1991). Histological study on the chronology of the developing dentition in gorilla and orangutan. American Journal of Physical Anthropology, 86, 189–203.Google Scholar
  7. Boyde, A. (1963). Appendix on the teeth of the skeletal remains of a child from Dinas Powys. In D. J. Alcock (Ed.), Dinas Powys. Cardiff: University of Wales Press.Google Scholar
  8. Boyde, A. (1979). Carbonate concentration, crystal centers, core dissolution, caries, cross striations, circadian rhythms, and compositional contrasts in the SEM. Journal of Dental Research, 58 (special issue B), 981–983.Google Scholar
  9. Boyde, A. (1989). Enamel. In A. Oksche & L. Vollrath (Eds.), Handbook of microscopic anatomy, Vol. V/6: Teeth (pp. 309–473). Berlin: Springer.Google Scholar
  10. Boyde, A. (1990). Developmental interpretations of dental microstructure. In C. J. De Rousseau (Ed.), Primate life history and evolution (pp. 229–267). New York: Wiley-Liss.Google Scholar
  11. Boyde, A., & Martin, L. B. (1982). Enamel microstructure determination in hominoid and cercopithecoid primates. Anatomy and Embryology, 165, 193–212.Google Scholar
  12. Bromage, T. G. (1991). Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissues. American Journal of Physical Anthropology, 86, 205–214.Google Scholar
  13. Bromage, T. G., & Dean, M. C. (1985). Re-evaluation of the age at death of immature fossil hominids. Nature, 317, 525–527.Google Scholar
  14. Bromage, T. G., Dirks, W., Erdjument-Bromage, H., Huck, M., Kulmer, O., Öner, R., et al. (2002). A life history and climate change solution to the evolution and extinction of insular dwarfs: a Cypriot experience. In W. H. Waldren & J. A. Ensenyat (Eds.), World islands in prehistory: International insular investigations V Deia conference of prehistory. British Archaeological Reports International Series, 105, 420–427.Google Scholar
  15. Bromage, T. G., Lacruz, R., Perez-Ochoa, A., & Boyde, A. (2007). Portable confocal scanning optical microscopy of Australopithecus africanus enamel microstructure. In S. Bailey & J. J. Hublin (Eds.), Dental perspectives on human evolution: State of the art research in dental paleoanthropology (pp. 193–209). New York: Springer.Google Scholar
  16. Bromage, T. G., LaCruz, R., Hogg, R., Goldman, H., McFarlin, S. C., Warshaw, J., et al. (2009). Lamellar bone reconciles enamel rhythms, body size, and organismal life history. Calcified Tissue International, 84, 388–404.Google Scholar
  17. Bromage, T. G., Juwayeyi, Y. M., Smolyar, I., Hu, B., Gomez, S., & Chisi, J. (2011a). Enamel-calibrated lamellar bone reveals long period growth rate variability in humans. Cells Tissues Organs, 194, 124–130.Google Scholar
  18. Bromage, T. G., Juwayeyi, Y. M., Smolyar, I., Hu, B., Gomez, S., Scaring, V. J., et al. (2011b). Signposts ahead: hard tissue signals on rue de Armand de Ricqles. Comptes Rendus Palevol, 10, 499–507.Google Scholar
  19. Bromage, T. G., Hogg, R. T., LaCruz, R. S., & Hou, C. (2012). Primate enamel evinces long period biological timing and regulation of life history. Journal of Theoretical Biology, 305, 131–144.Google Scholar
  20. Bromage, T. G., Juwayeyi, Y. M., Katris, J. A., Gomez, S., Ovsiy, O., Goldstein, J., et al. (2015). The scaling of human osteocyte lacuna density with body size and metabolism. Comptes Rendus Palevol, 15, 32–39.Google Scholar
  21. Bromage, T. G., Idaghdour, Y., Lacruz, R. S., Crenshaw, T. D., Ovsiy, O., Rotter, B., et al. (2016). The swine plasma metabolome chronicles “many days” biological timing and functions linked to growth. PLoS ONE, 11, e0145919.CrossRefGoogle Scholar
  22. Brown, M. F., Gratton, T. P., & Stuart, J. A. (2007). Metabolic rate does not scale with body mass in cultured mammalian cells. American Journal of Physiology – Regulatory Integrative, and Comparative Physiology, 292, R2115–R2121.Google Scholar
  23. Chinsamy, A. (1993). Bone histology and growth trajectory of the prosauropod dinosaur Massospondylus carinatus Owen. Modern Geology, 18, 319–329.Google Scholar
  24. Chinsamy, A., & Rubidge, B. S. (1993). Dicynodont (Therapsida) bone histology: phylogenetic and physiological implications. Palaeontologia Africana, 30, 97–102.Google Scholar
  25. Christen, P., Ito, K., & van Rietbergen, B. (2015). A potential mechanism for allometric trabecular bone scaling in terrestrial mammals. Journal of Anatomy, 226, 236–243.Google Scholar
  26. Dean, M. C. (1987). Growth layers and incremental markings in hard tissues: a review of the literature and some preliminary observations about enamel structure in Paranthropus boisei. Journal of Human Evolution, 16, 157–172.Google Scholar
  27. Dean, M. C. (1993). Daily rates of dentine formation in macaque tooth roots. International Journal of Osteoarchaeology, 3, 199–206.Google Scholar
  28. Dean, M. C. (1995). The nature and periodicity of incremental lines in primate dentine and their relationship to periradicular bands in OH 16 (Homo habilis). In J. Moggi-Cecchi (Ed.), Aspects of dental biology: Paleontology, anthropology, and evolution (pp. 239–265). Florence: Angelo Pontecorboli.Google Scholar
  29. Dean, M. C. (2000). Incremental markings in enamel and dentine: what they can tell us about the way teeth grow. In M. F. Teaford, M. M. Smith & M. W. J. Ferguson (Eds.), Development, function, and evolution of teeth (pp. 119–130). Cambridge, UK: Cambridge University Press.Google Scholar
  30. Dean, M. C., & Beynon, A. D. (1991). Histological reconstruction of crown formation times and initial root formation times in a modern human child. American Journal of Physical Anthropology, 86, 215–228.Google Scholar
  31. Dirks, W. (2003). Effect of diet on dental development in four species of catarrhine primates. American Journal of Primatology, 61, 29–40.Google Scholar
  32. Dirks, W., Reid, D. J., Jolly, C. J., Phillips-Conroy, J. E., & Brett, F. L. (2002). Out of the mouths of baboons: stress, life history, and dental development in the Awash National Park hybrid zone, Ethiopia. American Journal of Physical Anthropology, 118, 239–252.Google Scholar
  33. Dirks, W., Bromage, T. G., & Agenbroad, L. D. (2011). The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quaternary International, 255, 79–85.Google Scholar
  34. Elamin, F., & Liversidge, H. M. (2013). Malnutrition has no effect on the timing of human tooth formation. PLoS ONE, 8, e72274.CrossRefGoogle Scholar
  35. Erickson, G. M., Rauhut, O. W. M., Zhou, Z., Turner, A. H., Inouye, B. D., Hu, D., et al. (2009). Was dinosaurian physiology inherited by birds? Reconciling slow growth in Archaeopteryx. PLoS ONE, 4, e7390.Google Scholar
  36. Ferguson, C. A., Hardcastle, Z., & Sharpe, P. T. (2000). Development and patterning of the dentition. In P. O’Higgins & M. J. Cohn (Eds.), Development, growth, and evolution: Implications for the study of the hominid skeleton (pp. 187–205). San Diego: Academic.Google Scholar
  37. FitzGerald, C. M. (1998). Do enamel microstructures have regular time dependency? Conclusions from the literature and a large-scale study. Journal of Human Evolution, 35, 371–386.Google Scholar
  38. Fraenkel, L. (1835). De penitiori dentium humanorum structura observationis. In Diss Vratislaviae: Pressburg, Hungary.Google Scholar
  39. do Espirito Santo, A. R., Novaes, P. D., Line, S. R. P. (2006). Anisotropic properties of the enamel organic extracellular matrix. European Journal of Oral Sciences, 114 Supplement, 333–337.Google Scholar
  40. Franz-Odendaal, T. A., Chinsamy, A., & Lee-Thorp, J. (2004). High prevalence of enamel hypoplasia in an early Pliocene giraffid (Sivatherium hendeyi) from South Africa. Journal of Vertebrate Paleontology, 24, 235–244.Google Scholar
  41. Godfrey, L. R., Samonds, K. E., Jungers, W. L., & Sutherland, M. R. (2001). Teeth, brains, and primate life histories. American Journal of Physical Anthropology, 114, 192–214.Google Scholar
  42. Guatelli-Steinberg, D. (2001). What can developmental defects of enamel reveal about physiological stress in nonhuman primates? Evolutionary Anthropology, 10, 138–151.Google Scholar
  43. Gysi, A. (1931). Metabolism in adult enamel. Dental Digest, 37, 661–668.Google Scholar
  44. Hall, B. K. (2005). Bones and cartilage: Developmental and evolutionary skeletal biology. Amsterdam: Academic Press.Google Scholar
  45. Havers, C. (1691). Osteologia nova. London.Google Scholar
  46. Hillson, S. (1996). Dental anthropology (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  47. Hoffman, M. M., & Schour, I. (1938). Rate and gradients of growth in rat molar as demonstrated by injections of alizarin red. Journal of Dental Research, 17, 307–308.Google Scholar
  48. Hogg, R. T. (2010). Dental microstructure and growth in the cebid primates. Ph.D. Dissertation, City University of New York.Google Scholar
  49. Hogg, R. T., & Walker, R. (2011). Correlates of ecology in the enamel microstructure of Cebidae (Platyrrhini, Primates). Anatomical Record, 294, 2193–2206.Google Scholar
  50. Hogg, R. T., Ravosa, M., Vinyard, C., & Ryan, T. (2011). Functional morphology of the anterior masticatory apparatus of marmosets (Callithrix, Cebidae, Primates). Journal of Morphology, 272, 833–849.Google Scholar
  51. Hogg, R. T., Godfrey, L. R., Schwartz, G. T., Dirks, W., & Bromage, T. G. (2015). Lemur biorhythms and life history evolution. PLoS ONE, 10, e0134210.CrossRefGoogle Scholar
  52. Hogg, R. T., Bromage, T. G., Goldman, H. M., Katris, J. A., & Clement, J. G. (2017). The Havers-Halberg oscillation cycle and bone metabolism. In C. J. Percival & J. T. Richtsmeier (Eds.), Building bone: Early bone development in anthropology (pp. 254–280). Cambridge: Cambridge University Press.Google Scholar
  53. Horner, J. R., & Padian, K. (2004). Age and growth dynamics of Tyrannosaurus rex. Proceedings of the Royal Society of London B, 271, 1875–1880.Google Scholar
  54. Horner, J. R., de Ricqles, A., & Padian, K. (1999). Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology. Paleobiology, 25, 295–304.Google Scholar
  55. Jordana, X., & Köhler, M. (2011). Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): implications for life-history evolution of dwarf mammals in insular ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 59–66.Google Scholar
  56. Kawasaki, K., Tanaka, S., & Ishikawa, T. (1979). On the daily incremental lines in human dentine. Archives of Oral Biology, 24, 939–943.Google Scholar
  57. Kierdorf, H., Witzel, C., Upex, B., Dobney, K., & Kierdorf, U. (2012). Enamel hypoplasia in molars of sheep and goats, and its relationship to the pattern of tooth crown growth. Journal of Anatomy, 220, 484–495.Google Scholar
  58. Kierdorf, H., Kierdorf, U., Frölich, K., & Witzel, C. (2013). Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS ONE, 8, e74597.Google Scholar
  59. Kierdorf, H., Breuer, F., Richards, A., & Kierdorf, U. (2014). Characterization of enamel incremental markings and crown growth parameters in minipig molars. The Anatomical Record, 297, 1935–1949.Google Scholar
  60. Köhler, M., & Moya-Sola, S. (2009). Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proceedings of the National Academy of Sciences, USA, 106, 20354–20358.Google Scholar
  61. Köhler, M., Marin-Moratalla, N., Jordana, X., & Aanes, R. (2012). Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature, 487, 358–361.Google Scholar
  62. Lacruz, R. S., Ramirez-Rozzi, F., & Bromage, T. G. (2006). Variation in enamel development of South African fossil hominids. Journal of Human Evolution, 51, 580–590.Google Scholar
  63. Lacruz, R. S., Hacia, J. G., Bromage, T. G., Boyde, A., Lei, Y., Xu, Y., et al. (2012). The circadian clock modulates enamel development. Journal of Biological Rhythms, 27, 237–245.Google Scholar
  64. Leeuwenhoeck, A. (1693). Microscopical observations of the structure of teeth and other bones: made and communicated, in a letter by Mr. Anthony Leeuwenhoeck. Philosophical Transactions of the Royal Society of London, 12, 1002–1003.Google Scholar
  65. Linderer, C. J. (1837). Handbuch der Zahnheilkunde. Berlin: Schlesinger.Google Scholar
  66. Macho, G. A., & Williamson, D. K. (2002). The effects of ecology on life history strategies and metabolic disturbances during development: an example from the African bovids. Biological Journal of the Linnean Society, 75, 271–279.Google Scholar
  67. Macho, G. A., Reid, D. J., Leakey, M. G., Jablonski, N., & Beynon, A. D. (1996). Climatic effects on dental development of Theropithecus oswaldi from Koobi Fora and Olorgesailie. Journal of Human Evolution, 30, 57–70.Google Scholar
  68. Macho, G. A., Leakey, M. G., Williamson, D. K., & Jiang, Y. (2003). Palaeoenvironmental reconstruction: evidence for seasonality at Allia Bay, Kenya, at 3.9 million years. Palaeogeography, Palaeoclimatology, Palaeoecology, 199, 17–30.Google Scholar
  69. Mahoney, P., Miszkiewicz, J. J., Pitfield, R., Schlecht, S. H., Deter, C., & Guatelli-Steinberg, D. (2016). Biorhythms, deciduous enamel thickness, and primary bone growth: a test of the Havers-Halberg Oscillation hypothesis. Journal of Anatomy, 228, 919–928.Google Scholar
  70. Manson, J. D., & Waters, N. E. (1965). Observations on the rate of maturation of the cat osteon. Journal of Anatomy, 99, 539–549.Google Scholar
  71. Marin-Moratalla, N., Jordana, X., & Köhler, M. (2013). Bone histology as an approach to providing data on certain key life history traits in mammals: implications for conservation biology. Mammalian Biology – Zeitschrift für Säugetierkunde, 78, 422–429.Google Scholar
  72. Marrotti, G., Ferretti, M., Remaggi, F., & Palumbo, C. (1995). Quantitative evaluation on osteocyte canalicular density in human secondary osteons. Bone, 16, 125–128.Google Scholar
  73. Martin, L. B. (1983). The relationships of the later Miocene Hominoidea. Ph.D. Dissertation, University College London.Google Scholar
  74. Martin, L. B., Olejniczak, A. J., & Maas, M. C. (2003). Enamel thickness and microstructure in pitheciin primates, with comments on dietary adaptations of the middle Miocene hominoid Kenyapithecus. Journal of Human Evolution, 45, 351–367.Google Scholar
  75. Massler, M., & Schour, I. (1941). Growth potential and appositional life span of the enamel and dentin forming cells in the human deciduous teeth and first permanent molars. Journal of Dental Research, 20, 282–283.Google Scholar
  76. Massler, M., & Schour, I. (1946). The appositional lifespan of the enamel and dentine forming cells. Journal of Dental Research, 25, 145–50.Google Scholar
  77. Mays, S. (1995). The relationship between Harris lines and other aspects of skeletal development in adults and juveniles. Journal of Archaeological Science, 22, 511–520.Google Scholar
  78. McFarlin, S. (2006). Ontogenetic variation in long bone microstructure in catarrhines and its significance for life history. Ph.D. Dissertation, City University of New York.Google Scholar
  79. McHenry, H., & Schulz, P. D. (1976). The association between Harris lines and enamel hypoplasia in prehistoric California Indians. American Journal of Physical Anthropology, 44, 507–511.Google Scholar
  80. Metz, L. N., Martin, R. B., & Turner, A. S. (2003). Histomorphometric analysis of the effects of osteocyte density on osteonal morphology and remodeling. Bone, 33, 753–759.Google Scholar
  81. Newman, H., & Poole, D. (1974). Observations with scanning and transmission electron microscopy on the structure of human surface enamel. Archives of Oral Biology, 19, 1135–1143.Google Scholar
  82. Noyes, F. B., & Thomas, N. G. (1921). A text-book of dental histology and embryology, Including laboratory directions. New York: Lea & Febiger.Google Scholar
  83. Okada, M. (1943). Hard tissues of animal body – highly interesting details of Nippon studies in periodic patterns of hard tissue are described. Shanghai Evening Post, Medical Edition, 43, 15–31.Google Scholar
  84. Olsen, K. C., White, C. D., Longstaffe, F. J., von Heyking, K., McGlynn, G., Grupe, G., et al. (2014). Intraskeletal isotopic compositions (δ13C, δ15N) of bone collagen: nonpathological and pathological variation. American Journal of Physical Anthropology, 153, 598–604.Google Scholar
  85. Preiswerk, G. (1895) Beitrage zur Kenntniss der Schmelzstructur bei Saugethieren mit Besonderer Berucksichtigung der Ungulaten. Ph.D. Dissertation, University of Basel.Google Scholar
  86. Raia, P., & Meiri, S. (2006). The island rule in large mammals: paleontology meets ecology. Evolution, 60, 1731–1742.Google Scholar
  87. Ramirez-Rozzi, F. V. (1995). Time of crown formation in Plio-Pleistocene Hominid teeth. In J. Moggi-Cecchi (Ed.), Aspects of dental biology: Palaeontology, anthropology, and evolution (pp. 217–238). Florence: International Institute for the Study of Man.Google Scholar
  88. Ramirez-Rozzi, F. (2002). Enamel microstructure in hominids: new characteristics for a new paradigm. In N. Minugh-Purvis & K. J. MacNamara (Eds.), Human evolution through developmental change (pp. 319–348). Baltimore: Johns Hopkins.Google Scholar
  89. Ray, S., Botha, J., & Chinsamy, A. (2004). Bone histology and growth patterns of some nonmammalian therapsids. Journal of Vertebrate Paleontology, 24, 634–648.Google Scholar
  90. Retzius, A. (1837). Bemerkungen uber den innern Bau der Zahne, mit besonderer Rucksicht auf den im Zahnknochen vorkommenden Rohrenbau. In J. Muller (Ed.), Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin, in Verbindung mit Gelehrten (pp. 486–566). Berlin: Verlag von W. Thome.Google Scholar
  91. Risnes, S. (1986). Enamel apposition rate and the prism periodicity in human teeth. European Journal of Oral Sciences, 94, 294–404.Google Scholar
  92. Risnes, S. (1990). Structural characteristics of staircase-type Retzius lines in human dental enamel analyzed by scanning electron microscopy. Anatomical Record, 226, 135–146.Google Scholar
  93. Risnes, S. (1998). Growth tracks in dental enamel. Journal of Human Evolution, 35, 331–350.Google Scholar
  94. Rose, J. C. (1979). Morphological variations in growth of enamel prisms within abnormal striae of Retzius. Human Biology, 51, 139–151.Google Scholar
  95. Ruch, J. V., & Lesot, H. (2000). Molecules implicated in odontoblast terminal differentiation and dentinogenesis. In M. F. Teaford, M. M. Smith, & M. W. J. Ferguson (Eds.), Development, function, and evolution of teeth (pp. 13–21). Cambridge, UK: Cambridge University Press.Google Scholar
  96. Sander, P. M., & Andrassy, P. (2006). Lines of arrested growth and long bone histology in Pleistocene large mammals from Germany: what do they tell us about dinosaur physiology? Palaeontographica Abteilung A, 277, 143–159.Google Scholar
  97. Scott, A. B., & Hoppa, R. D. (2015). A re-evaluation of the impact of radiographic orientation on the identification and interpretation of Harris lines. American Journal of Physical Anthropology, 156, 141–147.Google Scholar
  98. Schour, I. (1936). The neonatal line in the enamel and dentin of human deciduous teeth and first permanent molar. Journal of the American Dental Association, 23, 1946–1955.Google Scholar
  99. Schour, I., & Hoffman, M. M. (1939). Studies in tooth development: I: the 16 microns calcification rhythm in the enamel and dentin from fish to man. Journal of Dental Research, 18, 91–102.Google Scholar
  100. Schour, I., & Massler, M. (1937). The rate and gradient of growth in deciduous teeth with special reference to neonatal ring. Journal of Dental Research, 16, 349–350.Google Scholar
  101. Schour, I., & Poncher, H. G. (1937). Rate of apposition of enamel and dentin, measured by the effect of acute fluorosis. American Journal of Diseases of Children, 54, 757–776.Google Scholar
  102. Schwartz, G. T., & Dean, M. C. (2001). Ontogeny of canine dimorphism in extant hominoids. American Journal of Physical Anthropology, 115, 259–288.Google Scholar
  103. Schwartz, G. T., Miller, E. R., & Gunnell, G. F. (2005). Developmental processes and canine dimorphism in primate evolution. Journal of Human Evolution, 48, 97–103.Google Scholar
  104. Schwartz, G. T., Reid, D. J., Dean, M. C., & Zihlman, A. L. (2006). A faithful record of stressful life events recorded in the dental development record of a juvenile gorilla. International Journal of Primatology, 27, 1201–1219.Google Scholar
  105. Shellis, R. P. (1998). Utilization of periodic markings in enamel to obtain information on tooth growth. Journal of Human Evolution, 35, 387–400.Google Scholar
  106. Shinoda, H. (1984). Faithful records of biological rhythms in dental hard tissues. Chemistry Today, 162, 40–43.Google Scholar
  107. Shinoda, H., & Okada, M. (1988). Diurnal rhythms in the formation of lamellar bone in young growing animals. Proceedings of the Japan Academy, 64, 307–310.Google Scholar
  108. Simpson, S. W. (1999). Reconstructing patterns of growth disruption from enamel microstructure. In R. D. Hoppa & C. M. FitzGerald (Eds.), Human growth in the past: Studies from bones and teeth (pp. 241–263). Cambridge, UK: Cambridge University Press.Google Scholar
  109. Smith, B. H. (1989). Dental development as a measure of life history in primates. Evolution, 43, 683–688.Google Scholar
  110. Smith, B. H., Crummett, T. L., & Brandt, K. L. (1994). Ages of eruption of primate teeth: a compendium for aging individuals and comparing life histories. Yearbook of Physical Anthropology, 37, 177–231.Google Scholar
  111. Smith, T. M., Tafforeau, P., Le Cabec, A., Bonnin, A., Houssaye, A., Pouech, J., et al. (2015). Dental ontogeny in Pliocene and early Pleistocene hominins. PLoS ONE, 10, e0118118.CrossRefGoogle Scholar
  112. Sousa, F. B., Vianna, S., & Snatos-Magalhaes, N. (2006). A new approach for improving the birefringence analysis of dental enamel mineral content using polarizing microscopy. Journal of Microscopy, 221, 79–83.Google Scholar
  113. Straehl, F. R., Scheyer, T. M., Forasiepi, A. M., MacPhee, R. D., & Sanchez-Villagra, M. R. (2013). Evolutionary patterns of bone histology and bone compactness in xenarthran mammal long bones. PLoS ONE, 8, e69275.CrossRefGoogle Scholar
  114. Tafforeau, P., Bentaleb, I., Jaeger, J. J., & Martin, C. (2007). Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 246, 206–227.Google Scholar
  115. Witzel, C., Kierdorf, U., Dobney, K., Ervynck, A., Vanpoucke, S., & Kierdorf., H. (2006). Reconstructing impairment of secretory ameloblast function in porcine teeth by analysis of morphological alterations in dental enamel. Journal of Anatomy, 209, 93–110.Google Scholar
  116. Woodward, H. N., Rich, T. H., Chinsamy, A., & Vickers-Rich, P. (2011). Growth dynamics of Australia’s polar dinosaurs. PLoS ONE, 6, e23339.CrossRefGoogle Scholar
  117. Zvonic, S., Ptitsyn, A. A., Kilroy, G., Wu., Conrad, S. A., Scott, L. K., et al. (2007). Circadian oscillation of gene expression in murine calvarial bone. Journal of Bone and Mineral Research, 22, 357–365.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Rehabilitation SciencesFlorida Gulf Coast UniversityFt MyersUSA

Personalised recommendations